DATA RESCUE AND QUALITY CONTROL OF DAILY TIME SERIES OF AIR TEMPERATURE (MEAN, MAXIMUM AND MINIMUM) AND ATMOSPHERIC PRECIPITATION IN UKRAINE

Sidenko Vladyslav
Ukrainian Hydrometeorological Institute of the State Emergency Service of Ukraine and the National Academy of Sciences of Ukraine, Kyiv
https://orcid.org/0000-0002-4143-2913

Kravchenko Ihor
Ukrainian Hydrometeorological Institute of the State Emergency Service of Ukraine and the National Academy of Sciences of Ukraine, Kyiv
https://orcid.org/0009-0006-4653-1853

Kyreieva Zoryna
Ukrainian Hydrometeorological Institute of the State Emergency Service of Ukraine and the National Academy of Sciences of Ukraine, Kyiv
https://orcid.org/0009-0003-9544-6944

Pinchuk Dmytro
Ukrainian Hydrometeorological Institute of the State Emergency Service of Ukraine and the National Academy of Sciences of Ukraine, Kyiv
https://orcid.org/0000-0002-2054-3761

DOI: http://doi.org/10.15407/Meteorology2023.03.027

Keywords: daily time series, air temperature, extreme temperatures, atmospheric precipitation, data rescue, quality control, INQC, Climatol

Abstract

This paper presents the results of the digitization of hard copies (meteorological tables) containing records of daily values of mean (TM), maximum (TX) and minimum (TN) surface air temperatures and atmospheric precipitation sums (RR). The daily values of TM, TX and TN obtained at 176 meteorological stations of the national hydrometeorological monitoring network were digitized. The largest number of stations (178) were processed for digitizing atmospheric precipitation data. The total number of digitized values is 3,571,778. The digitized values fill in the gaps in the digital database of daily values of the essential climatic variables (TM, TX, TN and RR), which was created at the Ukrainian Hydrometeorological Institute. The quality control of the digital database was carried out using state-of-the-art, well-tested dedicated software INQC and Climatol. The number of detected gross errors is 3,933 and ranges from 9 to 2015, depending on the meteorological parameter (however, not more than 0.04% of the total set of values of each variable). A slightly larger number of values were recorded that fell into the category of probable errors, outliers, suspicious values, and collectively suspicious values. The percentage of such values from the total amount of values for each dataset reaches up to 0.14%. Based on the results of the quality control procedure, all identified errors were checked and corrected in correspondence with the data in the original hard copies.

References

1. Osadchyi V.I., Aguilar E., Skrynyk O.A., Boichuk D.O., Sidenko V.P., Skrynyk O.Y. Daily asymmetry of temperature changes in Ukraine. Ukrainian Geographical Journal. 2018. № 3. P. 21-30. DOI: https://doi.org/10.15407/ugz2018.03.021

2. Osadchyi V.I., Skrynyk O.A., Sidenko V.P., Boichuk D.O., Oshurok D.O., Skrynyk O.Y. Homogenized database of long monthly mean air temperature time series. Geoinformatika. 2018. №1(65). 45-68

3. Palamarchuk L.V., Osadchyi V.I., Skrynyk O.A., Kyreieva Z.M., Sidenko V.P., Oshurok D.O., Skrynyk O.Y. Application of the HOMER software to quality control and homogenize time series of monthly precipitation sums. Hydrology, hydrochemistry and hydroecology. 2023. № 1(67). P. 58-77 DOI: https://doi.org/10.17721/2306-5680.2023.1.7

4. Sidenko V.P. Climatic studies of extreme weather conditions, events and phenomena in Ukraine and the world. Hydrology, hydrochemistry and hydroecology. 2022. №. 2(64) DOI: https://doi.org/10.17721/2306-5680.2022.2.5

5. Aguilar E., Skrynyk O. INQC: Quality control of climatological daily time series. R-Packages. 2021. URL: https://CRAN.R-project.org/package=INQC (accessed 12/01/2024).

6. Ashcroft L., Coll J. R., Gilabert A., Domonkos P., Brunet M., Aguilar E., Castella M., Sigro J., Harris I., Unden P., Jones P. A rescued dataset of sub-daily meteorological observations for Europe and the southern Mediterranean region, 1877-2012. Earth System Science Data. 2018. № 10(3). P. 1613–1635. DOI: https://doi.org/10.5194/ESSD-10-1613-2018.

7. Ashcroft L., Gergis J., Karoly D. J. A historical climate dataset for southeastern Australia, 1788–1859. Geoscience Data Journal. 2014. № 1(2). P. 158–178. DOI: https://doi.org/10.1002/GDJ3.19.

8. Brönnimann S., Annis J., Dann W., Ewen T., Grant A. N., Griesser T., Krähenmann S., Mohr C., Scherer M., Vogler C. A guide for digitising manuscript climate data. Climate of the Past. 2006. № 2(2). P. 137–144. DOI: https://doi.org/10.5194/CP-2-137-2006.

9. Brönnimann S., Allan R., Ashcroft L., Baer S., Barriendos M., Brázdil R., Brugnara Y., Brunet M., Brunetti M., Chimani B., Cornes R., Domínguez-Castro F., Filipiak J., Founda D., Herrera R. G., Gergis J., Grab S., Hannak L., Huhtamaa H., Jacobsen K. S., Jones P., Jourdain S., Kiss A., Lin K. E., Lorrey A., Lundstad E., Luterbacher J., Mauelshagen F., Maugeri M., Maughan N., Moberg A., Neukom R., Nicholson S., Noone S., Nordli Ø., Ólafsdóttir K. B., Pearce P. R., Pfister L., Pribyl K., Przybylak R., Pudmenzky C., Rasol D., Reichenbach D., Řezníčková L., Rodrigo F. S., Rohr C., Skrynyk O., Slonosky V., Thorne P., Valente M. A., Vaquero J. M., Westcottt N. E., Williamson F., Wyszyński Przemys. Unlocking pre-1850 instrumental meteorological records a global inventory. Bulletin of the American Meteorological Society. 2019. № 100(12). P. ES389–ES413. DOI: https://doi.org/10.1175/BAMS-D-19-0040.1.

10. Brönnimann S., Brugnara Y., Allan R. J., Brunet M., Compo G. P., Crouthamel R. I., Jones P. D., Jourdain S., Luterbacher J., Siegmund P., Valente M. A., Wilkinson C. W. A roadmap to climate data rescue services. Geoscience Data Journal. 2018. № 5(1). P. 28–39. DOI: https://doi.org/10.1002/GDJ3.56.

11. Brunet M., Gilabert A., Jones P., Efthymiadis D. A historical surface climate dataset from station observations in Mediterranean North Africa and Middle East areas. Geoscience Data Journal. 2014. № 1(2). P. 121–128. DOI: https://doi.org/10.1002/GDJ3.12.

12. Brunet M., Jones P. Data rescue initiatives: bringing historical climate data into the 21st century. Climate Research. 2011. № 47(1–2). P. 29–40. DOI: https://doi.org/10.3354/CR00960.

13. Camuffo D., Valle A. della, Becherini F., Zanini V. Three centuries of daily precipitation in Padua, Italy, 1713–2018: history, relocations, gaps, homogeneity and raw data. Climatic Change. 2020. № 162(2). P. 923–942. DOI: https://doi.org/10.1007/S10584-020-02717-2.

14. Costa A. C., Soares A. Homogenization of climate data: review and new perspectives using geostatistics. Mathematical Geosciences. 2008. № 41(3). P. 291–305. DOI: https://doi.org/10.1007/s11004-008-9203-3.

15. Delvaux C., Ingels R., Vrábeĺ V., Journée M., Bertrand C. Quality control and homogenization of the Belgian historical temperature data. International Journal of Climatology. 2019. № 39(1). P. 157–171. DOI: https://doi.org/10.1002/JOC.5792.

16. Frick C., Steiner H., Mazurkiewicz A., Riediger U., Rauthe M., Reich T., Gratzki A. Central European high-resolution gridded daily data sets (hyras): mean temperature and relative humidity. Meteorologische Zeitschrift. 2014. № 23(1). P. 15–32. DOI: https://doi.org/10.1127/0941-2948/2014/0560.

17. Guidelines on best practices for climate data rescue. 2016 edition. Geneva, Switzerland : World Meteorological Organization, 2016. ISBN 978-92-63-11182-1.

18. Guijarro J.A. Climatol: Climate tools (series homogenization and derived products). R-Packages. 2019. URL: https://CRAN.R-project.org/package=climatol (accessed 12/01/2024).

19. Hawkins E., Burt S., Brohan P., Lockwood M., Richardson H., Roy M., Thomas S. Hourly weather observations from the Scottish Highlands (1883–1904) rescued by volunteer citizen scientists. Geoscience Data Journal. 2019. № 6(2). P. 160–173. DOI: https://doi.org/10.1002/GDJ3.79.

20. Li Z., Cao L., Zhu Y., Yan Z. Comparison of two homogenized datasets of daily maximum/mean/minimum temperature in China during 1960–2013. Journal of Meteorological Research. 2016. № 30(1). P. 53–66. DOI: https://doi.org/10.1007/s13351-016-5054-x.

21. Mahmood R., Jia S. Quality control and homogenization of daily meteorological data in the trans-boundary region of the Jhelum River basin. Journal of Geographical Sciences. 2016. № 26(12). P. 1661–1674. DOI: https://doi.org/10.1007/s11442-016-1351-7.

22. Mateus C., Potito A. Development of a quality-controlled and homogenised long-term daily maximum and minimum air temperature network dataset for Ireland. Climate. 2021. № 9(11). P. 158. DOI: https://doi.org/10.3390/cli9110158.

23. Osadchyi V., Skrynyk O., Palamarchuk L., Skrynyk O., Osypov V., Oshurok D., Sidenko V. Dataset of gridded time series of monthly air temperature (min, max, mean) and atmospheric precipitation for Ukraine covering the period of 1946–2020. Data in Brief. 2022. № 44. P. 108553. DOI: https://doi.org/10.1016/j.dib.2022.108553.

24. Osadchyi V., Skrynyk O., Radchenko R., Skrynyk O. Homogenization of Ukrainian air temperature data. International Journal of Climatology. 2017. № 38(1). P. 497–505. DOI: https://doi.org/10.1002/joc.5191.

25. Randriamarolaza L. Y. A., Aguilar E., Skrynyk O., Vicente‐Serrano S. M., Domínguez‐Castro F. Indices for daily temperature and precipitation in Madagascar, based on quality‐controlled and homogenized data, 1950–2018. International Journal of Climatology. 2021. № 42(1). DOI: https://doi.org/10.1002/joc.7243.

26. Rodrigo F. S. Recovering climate data from documentary sources: A study on the climate in the south of Spain from 1792 to 1808. Atmosphere. 2020. № 11(3). DOI: https://doi.org/10.3390/ATMOS11030296.

27. Skrynyk O., Aguilar E., Skrynyk O., Sidenko V., Boichuk D., Osadchyi V. Quality control and homogenization of monthly extreme air temperature of Ukraine. International Journal of Climatology. 2019. № 39(4). P. 2071–2079. DOI: https://doi.org/10.1002/JOC.5934.

28. Skrynyk O., Luterbacher J., Allan R., Boichuk D., Sidenko V., Skrynyk O., Palarz A., Oshurok D., Xoplaki E., Osadchyi V. Ukrainian early (pre‐1850) historical weather observations. Geoscience Data Journal. 2020. № 8(1). P. 55–73. DOI: https://doi.org/10.1002/gdj3.108.

29. Skrynyk O., Sidenko V., Aguilar E., Guijarro J., Skrynyk O., Palamarchuk L., Oshurok D., Osypov V., Osadchyi V. Data quality control and homogenization of daily precipitation and air temperature (mean, max and min) time series of Ukraine. International Journal of Climatology. 2023. С. joc.8080. DOI: https://doi.org/10.1002/joc.8080.

30. Štěpánek P., Zahradníček P., Skalák P. Data quality control and homogenization of air temperature and precipitation series in the area of the Czech Republic in the period 1961–2007. Advances in Science and Research. 2009. № 3(1). P. 23–26. DOI: https://doi.org/10.5194/asr-3-23-2009.

31. Venema V. K. C., Mestre O., Aguilar E., Auer I., Guijarro J. A., Domonkos P., Vertacnik G., Szentimrey T., Stepanek P., Zahradnicek P., Viarre J., Müller-Westermeier G., Lakatos M., Williams C. N., Menne M. J., Lindau R., Rasol D., Rustemeier E., Kolokythas K., Marinova T., Andresen L., Acquaotta F., Fratianni S., Cheval S., Klancar M., Brunetti M., Gruber C., Prohom Duran M., Likso T., Esteban P., Brandsma T. Benchmarking homogenization algorithms for monthly data. Climate of the Past. 2012. № 8(1). P. 89–115. DOI: https://doi.org/10.5194/cp-8-89-2012.

About ׀ Editorial board ׀ Ethics ׀ For authors ׀ For reviewers ׀ Archive ׀ Contacts