Dynamical conditions of the spatial extremes formation in ozone layer over the territory of Ukraine

Antonina Umanets
Ukrainian Hydrometeorological Institute of the State Emergency Service of Ukraine and the National Academy of Sciences of Ukraine, Kyiv
https://orcid.org/0009-0008-4867-4430

Sofiia Krainyk
Ukrainian Hydrometeorological Institute of the State Emergency Service of Ukraine and the National Academy of Sciences of Ukraine, Kyiv
https://orcid.org/0009-0004-6299-0983

Mykhailo Savenets
Ukrainian Hydrometeorological Institute of the State Emergency Service of Ukraine and the National Academy of Sciences of Ukraine, Kyiv
https://orcid.org/0000-0001-9429-6209

DOI: http://doi.org/10.15407/Meteorology2024.05.089

Keywords: total ozone content, stratosphere, advection, stratospheric polar vortex

Abstract

The paper examines the conditions for the formation of spatial extremes in total ozone content (TOC) over the territory of Ukraine caused by dynamic factors. The study used satellite observations of TOC and meteorological parameters (u,v components of wind and geopotential height) from the ERA5 reanalysis in the Northern Hemisphere. We describe the processes of air advection with significant TOC deviations and implement its classification into the main types. Seventy cases of spatial extremes were identified, 86% of which were observed under air advection with a western component. The intense westerly flow in the lower stratosphere is responsible for both the advection of air with high TOC (total ozone content) and its local formation. Under a well-developed polar vortex, most ozone extremes are transported by the main flow and reach the territory of Ukraine from the west and northwest, forming significant positive deviations. In this case, the polar vortex itself must be displaced into the Eastern Hemisphere for Ukraine to be closer to its outer boundary. When the integrity of the polar vortex is disrupted, it takes on a wavelike structure, leading to greater variability in the processes forming ozone extremes over Ukraine, including TOC advection from the north and local formation. With the breakdown of the polar vortex and the onset of a rapid TOC decrease in late March to April, the likelihood of positive ozone deviations from the north increases, though their recurrence does not exceed 7% of the total number of extremes. Significant negative TOC deviations spread over Ukraine during the period of seasonal minima under two conditions: advection from the northwest when the stratospheric polar vortex is absent (until November), and advection from the west in the early stages of vortex formation (in December). The established and described dynamic conditions for the formation of ozone layer extremes are important for extending the lead time in forecasting ozone anomalies over Ukraine.

References

1. Barnes, P. W., Williamson, C. E., Lucas, R. M., Robinson, S. A., Madronich, S., Paul, N. D., Bornman, J. F., Bais, A. F., Sulzberger, B., Wilson, S. R., Andrady, A. L., McKenzie, R. L., Neale, P. J., Austin, A. T., Bernhard, G. H., Solomon, K. R., Neale, R. E., Young, P. J., Norval, M., Rhodes, L. E., Hylander, S., Rose, K. C., Longstreth, J., Aucamp, P. J., Ballare, C. L., Cory, R. M., Flint, S. D., de Gruijl, F. R., Hader, D.-P., Heikkila, A. M., Jansen, M. A. K., Pandey, K. K., Robson, T. M., Sinclair, C. A., Wangberg, S., Worrest, R. C., Yazar, S., Young, A. R., & Zepp, R. G. (2019). Ozone depletion, ultraviolet radiation, climate change and prospects for a sustainable future. Nature Sustainability, 2, 569-579, https://doi.org/10.1038/s41893-019-0314-2.

2. Dütsch H.U. (1968). The photochemistry of stratospheric ozone. Quarterly Journal of Royal Meteorological Society, 94 (402), 483-497. https://doi.org/10.1002/qj.49709440205

3. Dvoretska, I. V. (2012). The features of total ozone dynamics during the modern period. Naukovi pratsi UkrNDGMI, 262, 257-271.

4. Dvoretska, I.V., Savenets, M.V., & Umanets, A.P. (2021). Updated total ozone climate normals over the territory of Ukraine. Ukrainian Hydrometeorological Journal, 28, 5-15. https://doi.org/10.31481/uhmj.28.2021.01

5. Grytsai, A.V. & Milinevsky, G. P. (2018). Total ozone content over KYIV-GOLOSEYEV station by ground-based and satellite measurements in 2010–2015. Space Science and Technology, 24(3), 40-54. https://doi.org/10.15407/knit2018.03.040

6. Harzer, F., Garny, H., Ploeger, F., Bönisch, H., Hoor, P., & Birner, T. (2023). On the pattern of interannual polar vortex–ozone co-variability during northern hemispheric winter. Atmospheric Chemistry and Physics, 23, 10661–10675. https://doi.org/10.5194/acp-23-10661-2023

7. Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horányi, A., Muñoz Sabater, J., Nicolas, J., Peubey, C., Radu, R., Rozum, I., Schepers, D., Simmons, A., Soci, C., Dee, D., Thépaut, J-N. (2023). ERA5 hourly data on pressure levels from 1940 to present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS). https://doi.org/10.24381/cds.bd0915c6 (Accessed on 20.09.2024)

8. Hong, H.-J., & Reichler, T. (2021). Local and remote response of ozone to Arctic stratospheric circulation extremes. Atmospheric Chemistry and Physics, 21, 1159–1171. https://doi.org/10.5194/acp-21-1159-2021

9. Hu, D., Shi, S., & Wang Z. (2023). Link between Arctic ozone and the stratospheric polar vortex. Atmospheric and Oceanic Science Letters, 16(1), 100293. https://doi.org/10.1016/j.aosl.2022.100293

10. Hufnagl, L., Eichinger, R., Garny, H., Birner, T., Kuchař, A., Jöckel, P., & Graf, P. (2023). Stratospheric Ozone Changes Damp the CO2-Induced Acceleration of the Brewer–Dobson Circulation. Journal of Climate, 36, 3305–3320. https://doi.org/10.1175/JCLI-D-22-0512.1

11. Karadan, M., Raju, P., & Devara, P. (2022). An Overview of Stratospheric Ozone and Climate Effects. Earth and Planetary Science, 1(2), 19–34. https://doi.org/10.36956/eps.v1i2.782

12. Li, Y., Xia Y., Xie, F., & Yan Y. (2024). Influence of stratosphere-troposphere exchange on long-term trends of surface ozone in CMIP6. Atmospheric Research, 297, 107086. https://doi.org/10.1016/j.atmosres.2023.107086

13. Liu, M., & Hu, D. (2021). Different Relationships between Arctic Oscillation and Ozone in the Stratosphere over the Arctic in January and February. Atmosphere, 12, 129. https://doi.org/10.3390/atmos12020129

14. Mann, P.S. (2010). Introductory Statistics, Seventh Edition. John Wiley & Sons.

15. Mogylchak, V. Y., & Milinevsky, G. P. (2017). Variations of total ozone in the atmosphere over the territory of Ukraine. Space Science and Technology, 23(2), 41-47. https://doi.org/10.15407/knit2017.02.041

16. Rolf, M. (2009). A brief history of stratospheric ozone research. Meteorologische Zeitschrift, 18(1), 3-24. https://doi.org/10.1127/0941-2948/2009/353

17. Salby, M.L. (2008). Involvement of the Brewer–Dobson circulation in changes of stratospheric temperature and ozone. Dynamics of Atmospheres and Oceans, 44(3-4), 143-164. https://doi.org/10.1016/j.dynatmoce.2006.11.002

18. Savenets, M. V., Dvoretska, I. V., Umanets, A. P., & Grechana, N. V. (2020). Ozone layer state and level of ultraviolet irradiance over the territory of Ukraine in 2019. Ukrainian Hydrometeorological Journal, 25, 53-62. https://doi.org/10.31481/uhmj.25.2020.05

19. Shangguan, M., Wang, W., & Jin, S. (2019). Variability of temperature and ozone in the upper troposphere and lower stratosphere from multi-satellite observations and reanalysis data. Atmospheric Chemistry and Physics, 19, 6659–6679. https://doi.org/10.5194/acp-19-6659-2019

20. Shi, Y., Evtushevsky, O., Milinevsky, G., Klekociuk, A., Han, W., Ivaniha, O., Andrienko, Y., Shulga, V., & Zhang, C. (2022). Zonal Asymmetry of the Stratopause in the 2019/2020 Arctic Winter. Remote Sensing, 14, 1496. https://doi.org/10.3390/rs14061496

21. Shin, D., Song, S., Ryoo, S.-B., & Lee, S.-S. (2020). Variations in Ozone Concentration over the Mid-Latitude Region Revealed by Ozonesonde Observations in Pohang, South Korea. Atmosphere, 11, 746. https://doi.org/10.3390/atmos11070746

22. Staehelin, J., Mäder, J., Weiss, A. K., & Appenzeller, C. (2002). Long-term ozone trends in Northern mid-latitudes with special emphasis on the contribution of changes in dynamics. Physics and Chemistry of the Earth, Parts A/B/C, 27 (6–8), 461-469. https://doi.org/10.1016/S1474-7065(02)00027-X

23. Veenus. V., Shankar Das, S., & David L.M. (2023). Ozone Changes Due To Sudden Stratospheric Warming-Induced Variations in the Intensity of Brewer-Dobson Circulation: A Composite Analysis Using Observations and Chemical-Transport Model. Geophysical Research Letters, 50 (13), e2023GL103353. https://doi.org/10.1029/2023GL103353

24. Weber, M., Dikty, S., Burrows, J. P., Garny, H., Dameris, M., Kubin, A., Abalichin, J., & Langematz, U. (2011). The Brewer-Dobson circulation and total ozone from seasonal to decadal time scales. Atmospheric Chemistry and Physics, 11, 11221–11235, https://doi.org/10.5194/acp-11-11221-2011

25. Yu, Y., Wu, Y., Zhang, J., Cui, Z., Shi, C., Rao, J., Guo, D., & Xia X. (2024). Connections between low- and high- frequency variabilities of stratospheric northern annular mode and Arctic ozone depletion. Environmental Research Letters, 19, 044040. https://doi.org/10.1088/1748-9326/ad2c24

26. Zhang, C., Grytsai, A., Evtushevsky, O., Milinevsky, G., Andrienko, Y., Shulga, V., Klekociuk, A., Rapoport, Y, & Han, W. (2024). Study on the Rossby Waves Parameters in Total Ozone Over the Arctic in 2000–2021. Research Advances in Environment, Geography and Earth Science, 3, 72–92. https://doi.org/10.9734/bpi/raeges/v3/7572B

About ׀ Editorial board ׀ Ethics ׀ For authors ׀ For reviewers ׀ Archive ׀ Contacts