NUTRIENT LOAD IN THE SULA RIVER BASIN AND MEASURES TO MITIGATE ITS EFFECTS

Bonchkovskyi A.S.
Ukrainian Hydrometeorological Institute of the State Emergency Service of Ukraine and the National Academy of Sciences of Ukraine, Kyiv, Ukraine
https://orcid.org/0000-0002-3275-6772

Osypov V.V.
Ukrainian Hydrometeorological Institute of the State Emergency Service of Ukraine and the National Academy of Sciences of Ukraine, Kyiv, Ukraine
https://orcid.org/0000-0003-4853-8021

Osadcha N.M.
Ukrainian Hydrometeorological Institute of the State Emergency Service of Ukraine and the National Academy of Sciences of Ukraine, Kyiv, Ukraine
https://orcid.org/0000-0001-6215-3246

DOI:

Keywords: nutrient emmision, Sula river, mass balance method, MONERIS model, measures to reduce nutrient load

Abstract

Nitrogen and phosphorus enter water bodies from point and diffuse sources. In the practice of water resources management in Ukraine, attention has so far been paid primarily to point sources, whereas the role of diffuse sources has long been ignored by researchers. To take into account the role of diffuse sources, modelling approaches are used worldwide. Therefore, the paper presents the calculation of the nutrient load of the Sula basin by two different methods - the mass balance method and the MONERIS model. According to the mass balance method, the emission in the Sula catchment is 921.2 t · year-1 for nitrogen and 312.9 t · year-1 for phosphorus. According to the MONERIS model, the total nitrogen emission is 1,809.8 t · year-1, and the phosphorus emission is 196.2 t · year-1. Based on the calculations, effective tools for reducing the anthropogenic load on the Sula catchment were proposed, in particular the implementation the Nitrate Directive at the national and regional levels, the conduction an environmentally oriented dialogue between state institutions, local governments, water users and farmers. It was also proposed to create a unified hierarchical system for collecting qualitative and operational information on the environmental situation within the catchment basins, as well as to establish a system for measuring chemical nitrogen and phosphorus flows at all eight gauging stations within the Sula basin. Specific measures to reduce the anthropogenic load in the Sula catchment include: improving the quality of sewage systems; reducing the use of fertilisers; reducing the share of arable land by converting it to pasture and forest; implementing organic farming; establisihing coastal protection stripes and strictly enforcing them; and restoring natural wetlands and natural river channels. The MONERIS model has shown that the greatest reduction in nitrogen and phosphorus emissions is possible through the use of contour ploughing and intercropping.

References

1. Arnold, J., Moriasi, D., Gassman, P., Abbaspour, K., White, M., Srinivasan, R., Santhi, C., Harmel, R., van Griensven, A., Van Liew, M., Kannan, N., Jha, M. (2012). SWAT: Model use, calibration, and validation. Transactions of the ASABE, 55 (4), 1491–1508.

2. Behrendt, H., Huber, P., Kornmilch, M., Opitz, D., Schmoll, O., Scholz, G., Uebe, R. (2000). Nutrient emissions into river basins of Germany (UBA-Texte 23/00).

3. Behrendt, H., Venohr, M., Hirt, U., Hofmann, J., Opitz, D., Gericke, A. (2007). The model system MONERIS, version 2.0: User’s manual. Leibniz Institute of Freshwater Ecology and Inland Fisheries in the Forschungsverbund Berlin e.V.

4. Biletska, S.V., Osadcha, N.M., Bonchkovskyi, A.S. (2021). Methodology for calculating the soil nutrient balance. Abstracts of the Second All-Ukrainian Hydrometeorological Congress (October 7-9, 2021, Odesa, Ukraine) (pp. 37-38). Odesa: Odessa State Environmental University. [in Ukrainian]

5. Bonchkovskyi, A.S., Osadcha, N.M. (2024). Modelling of the nutrient load in the Sula River basin using the MONERIS. Physical Geography and Geomorphology, 47, 3–4 (125–126), 7–20. https://doi.org/10.17721/phgg.2024.3-4.01 [in Ukrainian]

6. Bonchkovskyi, A.S., Osypov, V.V (2024). Assessment of nutrients load in the Sula river basin from point and diffuse sources. Hydrology, Hydrochemistry and Hydroecology, 1 (71), 58–73. https://doi.org/10.17721/2306-5680.2024.1.6 [in Ukrainian]

7. Borrelli, P., Ballabio, C., Yang, J., Robinson, D., Panagos, P. (2022). GloSEM: High-resolution global estimates of present and future soil displacement in croplands by water erosion. Scientific Data, 9 (406). https://doi.org/10.1038/s41597-022-01489-x

8. Borrelli, P., Robinson, D.A., Fleischer, L.R., Lugato, E., Ballabio, C., Alewell, C., Meusburger, K., Modugno, S., Schutt, B., Ferro, V., Bagarello, V., Van Oost, K., Montanarella, L., Panagos, P. (2017). An assessment of the global impact of 21st century land use change on soil erosion. Nature Communications, 8 (1), Article 2013.

9. Bouwman, A.F., Van Drecht, G., Van der Hoek, K.W. (2005). Nitrogen surface balances in intensive agricultural production systems in different world regions for the period 1970–2030. Pedosphere, 15 (2), 137–155.

10. Commission Implementing Regulation (EU) 2021/1165 of 15 July 2021 authorising certain products and substances for use in organic production and establishing their lists (Text with EEA relevance). (2021). Official Journal of the European Union.

11. Council Directive № 987_002-91 of 12 December 1991 concerning the protection of waters against pollution caused by nitrates from agricultural sources (91/676/EEC). (1991). Retrieved February 10, 2024 from https://zakon.rada.gov.ua/laws/show/213/95-%D0%B2%D1%80#Text">https://zakon.rada.gov.ua/laws/show/213/95-%D0%B2%D1%80#Text [in Ukrainian]

12. Fischer, P., Gericke, A., Venohr, M. (2018). Updated integrated Tisza river basin management plan. Annex 2. Further development of the MONERIS model with particular focus on the application in the Tisza River Basin, for the implementation of JOINTISZA project. Leibniz-Institute for Freshwater Ecology and Inland Fisheries (IGB).

13. Helm, B., Terekhanova, T., Tränckner, J., Venohr, M., Krebs, P. (2013). Attributiveness of a mass flow analysis model for integrated water resources assessment under data-scarce conditions. Water Science and Technology, 67 (2), 261–270. https://doi.org/10.2166/wst.2012.497

14. Hirt, U., Kreins, P., Kuhn, U., Mahnkopf, J., Venohr, M., Wendland, F. (2012). Management options to reduce future nitrogen emissions into rivers: A case study of the Weser river basin, Germany. Agricultural Water Management, 115, 118–131. https://doi.org/10.1016/j.agwat.2012.08.005

15. Howard, A.D. (1990). Theoretical model of optimal drainage network. Water Resources Research, 26 (9), 2107–2117. https://doi.org/10.1029/WR026i009p02107

16. Hussian, M., Grimvall, A., Petersen, W. (2004). Estimation of the human impact on nutrient loads carried by the Elbe River. Environmental Monitoring and Assessment, 96 (1–3), 15–33. https://doi.org/10.1023/b:emas.0000031722.88972.62

17. ICPDR (2021). Danube River Basin Management Plan (DRBMP). International Commission for the Protection of the Danube River.

18. Ilnicki, P. (2014). Emissions of nitrogen and phosphorus into rivers from agricultural land – selected controversial issues / Ładunki azotu i fosforu wprowadzane do rzek z terenów rolniczych – wybrane dyskusyjne problemy. Journal of Water and Land Development, 23 (1), 31–40. https://doi.org/10.1515/jwld-2014-0027

19. Karra, K., Kontgis, C., Statman-Weil, Z., Mazzariello, J.C., Mathis, M., Brumby, S.P. (2021). Global land use / land cover with Sentinel 2 and deep learning. In Proceedings of the 2021 IEEE International Geoscience and Remote Sensing Symposium (IGARSS). (11-16 July 2021, Brussels, Belgium) (pp. 4704–4707). Belgium: IEEE. https://doi.org/10.1109/IGARSS47720.2021.9553499

20. Krupskyi, N. (Ed.). (1977). Soil map of the Ukrainian SSR. Scale 1:2 500 000. Main Administration of Geodesy and Cartography (GUGK) under the USSR Council of Ministers. NSC 'Institute for Soil Science and Agrochemistry Research named after O.N. Sokolovsky. [in Russian]

21. Kuuppo, P. (2006). River biogeochemistry and source identification of nitrate by means of isotopic tracers in the Baltic Sea catchments. Biogeosciences, 3, 663–676.

22. Laktionova, T., Medvedev, V., Savchenko, K., Byhun, O., Sheiko, S., Nakysko, S. (2012). «Database of soil properties for Ukraine» (structure and the order of use). 2nd edition. Kharkov: Tsyfrovaia typohrafyia №1. [in Russian]

23. LP DAAC (2004). Global 30 Arc-Second Elevation Data Set GTOPO30. Land Process Distributed Active Archive Center.

24. Luna Juncal, M.J., Masino, P., Bertone, E., Stewart, R.A. (2023). Towards nutrient neutrality: A review of agricultural runoff mitigation strategies and the development of a decision-making framework. Science of The Total Environment, 874, Article 162408. https://doi.org/10.1016/j.scitotenv.2023.162408

25. Muñoz-Sabater, J., Dutra, E., Agustí-Panareda, A., Albergel, C., Arduini, G., Balsamo, G., Boussetta, S., Choulga, M., Harrigan, S., Hersbach, H., Martens, B., Miralles, D.G., Piles, M., Rodríguez-Fernández, N.J., Zsoter, E., Buontempo, C., Thépaut, J.-N. (2021). ERA5-Land: A state-of-the-art global reanalysis dataset for land applications. Earth System Science Data, 13, 4349–4383. https://doi.org/10.5194/essd-13-4349-2021

26. Nabyvanets, Yu.B., Osadcha, N.M., Hrebin, V.V., Vasylenko, Ye.V., Koshkina, O.V. (2019). Report ENI/2016/372-403 «Development of the Dnipro Basin Management Plan within Ukraine: Phase 1, Step 1 – Description of the characteristics of the river basin». European Union Water Initiative Plus for Eastern Partnership Countries (EUWI+). [in Ukrainian]

27. NASA JPL (2013). NASA Shuttle Radar Topography Mission Global 1 arc second [Data set]. NASA EOSDIS Land Processes DAAC. https://doi.org/10.5067/MEaSUREs/SRTM/SRTMGL1N.003

28. Osadcha, N.M., Luzovitska, Yu.A., Ukhan, O.O., Biletska, S.V., Osypov, V.V., Bonchkovsky, A.S., Nabyvanets, Yu.B., Osadchyi, V.I. (2022). Methodology for Assessing the Surface Water Pollution by Nutrients. Ukrainian Geographical Journal, 4, 37–48. https://doi.org/10.15407/ugz2022.04.037

29. Osadchyi, V., Skrynyk, Olesya, Palamarchuk, L., Skrynyk, Oleg, Osypov, V., Oshurok, D., Sidenko, V. (2022). Dataset of gridded time series of monthly air temperature (min, max, mean) and atmospheric precipitation for Ukraine covering the period of 1946–2020. Data in Brief, 44, Article 108553. https://doi.org/10.1016/j.dib.2022.108553

30. Osadchyi, V.I., Osadcha, N.M., Mostova, N.M. (2002). Influence of urban areas on the chemical composition of surface waters of the Dnieper basin. Scientific works of the Ukrainian Research Hydrometeorological Institute, 250, 242–261. [in Ukrainian]

31. Ostapenko, P. (Ed.) (2021). Atlas of the Administrative and Territorial Structure of Ukraine, second edition, supplemented. The project «Supporting proper governance in local communities as a component of the reform decentralization» of the OSCE project coordinator in Ukraine. The Ministry for Communities and Territories Development of Ukraine, The Ukrainian Researchers Society. [in Ukrainian]

32. Osypov, V., Matviienko, Y., Bonchkovskyi, A., Osadcha, N., Mossur, H., Ahafonov, Y. (2023). Land & Water: An interactive web cartography platform for hydrological research in Ukraine. 17th International Scientific Conference: Monitoring of Geological Processes and Ecological Condition of the Environment. (7-10 November 2023, Kyiv, Ukraine). European Association of Geoscientists & Engineers, Mon23-162. (1–5). Ukraine: Kyiv. https://doi.org/10.3997/2214-4609.2023520162

33. Osypov, V., Osadcha, N., Osadchyi, V. (2016). SWAT Model Application for Simulating Nutrients Emission from an Agricultural Catchment in Ukraine. Forum Geografic, 15 (2), 30–38. https://doi.org/10.5775/fg.2016.041.s

34. Osypov, V.V., Bonchkovskyi, A.S., Oreshchenko, A.V., Oshurok, D.O., Osadcha, N.M. (2021). Quantifying wind-induced undercatch in the precipitation measurements at Ukrainian weather stations. Visnyk of V. N. Karazin Kharkiv National University, Series «Geology. Geography. Ecology», 55, 204–215. https://doi.org/10.26565/2410-7360-2021-55-15 [in Ukrainian]

35. Osypov, V.V., Speka, O.S., Osadchyi, V.I., Osadcha, N.M., Bonchkovskyi, A.S. (2020). Hydrograph forecasting using the SWAT model (Soil and Water As sessment Tool) on the example of the Desna basin. Reports of the National Academy of Sciences of Ukraine, 9, 98–107. https://doi.org/10.15407/dopovidi2020.09.098 [in Ukrainian]

36. Panagos, P., Borrelli, P., Meusburger, K., Alewell, C., Lugato, E., Montanarella, L. (2015). Estimating the soil erosion cover-management factor at the European scale. Land Use Policy, 48, 38–50. https://doi.org/10.1016/j.landusepol.2015.05.021

37. Park, S., Oh, C., Jeon, S., Jung, H., Choi, C. (2011). Soil Erosion Risk in Korean Watersheds, Assessed Using the Revised Universal Soil Loss Equation. Journal of Hydrology, 399, 263–273. https://doi.org/10.1016/j.jhydrol.2011.01.004

38. Reuter, H.I., Nelson, A., Jarvis, A. (2007). An evaluation of void filling interpolation methods for SRTM data. International Journal of Geographic Information Science, 21 (9), 983–1008.

39. Sanchez, P.A., Ahamed, A., Carre, F., Zhang, G. (2009). Digital soil map of the world. Science, 325 (5941), 680–681. https://doi.org/10.1126/science.1175084

40. Savic, R., Stajic, M., Blagojević, B., Bezdan, A., Vranesevic, M., Nikolić Jokanović, V., Baumgertel, A., Bubalo Kovačić, M., Horvatinec, J., Ondrasek, G. (2022). Nitrogen and phosphorus concentrations and their ratios as indicators of water quality and eutrophication of the hydro-system Danube–Tisza–Danube. Agriculture, 12 (7), Article 935. https://doi.org/10.3390/agriculture12070935

41. Schreiber, H., Behrendt, H., Constantinescu, L. T., Cvitanic, I., Drumea, D., Jabucar, D., Juran, S., Pataki, B., Snishko, S., Zessner, M. (2005). Nutrient emissions from diffuse and point sources into the River Danube and its main tributaries for the period of 1998–2000 – results and problems. Water Science and Technology, 51 (3–4), 283–290. https://doi.org/10.2166/wst.2005.0602

42. Schreiber, H., Constantinescu, L.T., Cvitanic, I., Drumea, D., Jabucar, D., Juran, S., Pataki, B., Snishko, S., Zessner, M., Behrendt, H. (2003). Harmonized Inventory of Point and Diffuse Emissions of Nitrogen and Phosphorous for a Transboundary River Basin. Research Report 200 22 232. Environmental Research of the Federal Ministry of the Environment, Nature Conservation and Nuclear Safety, Germany.

43. Sileika, A.S., Kutra, S., Berankienne, L. (2002). Phosphate run-off in the Nevezis River (Lithuania). Environmental Monitoring Assessment, 78, 153–167.

44. Simpson, D., Benedictow, A., Berge, H., Bergström, R., Emberson, L.D., Fagerli, H., Flechard, C.R., Hayman, G.D., Gauss, M., Jonson, J.E., Jenkin, M.E., Nyíri, A., Richter, C., Semeena, V.S., Tsyro, S., Tuovinen, J.-P., Valdebenito, Á., Wind, P. (2012). The EMEP MSC-W chemical transport model – technical description. Atmospheric Chemistry and Physics, 12 (16), 7825–7865.

45. Slyva, L.M., Shestopalov, V.M. (2007). Groundwater. Scale 1: 2 500 000. National Atlas of Ukraine. DNVP «Kartohrafiia». [in Ukrainian]

46. Stålnacke, P., Vandsemb, S.M., Vassiljev, A., Grimvall, A., Jolankai, G. (2004). Changes in nutrient levels in some Eastern European rivers in response to large-scale changes in agriculture. Water Science and Technology, 49 (3), 29–36.

47. Subbarao, G.V., Sahrawat, K.L., Nakahara, K., Ishikawa, T., Kishii, M., Rao, I.M., Hash, C.T., George, T.S., Srinivasa Rao, P., Nardi, P., Bonnett, D., Berry, W., Suenaga, K., Lata, J.C. (2012). Chapter six - Biological Nitrification Inhibition—A Novel Strategy to Regulate Nitrification in Agricultural Systems. In D.L. Sparks (Ed.), Advances in Agronomy, 114, (pp. 249–302). Academic Press. https://doi.org/10.1016/B978-0-12-394275-3.00001-8

48. Teng, H., Viscarra Rossel, R.A., Shi, Z., Behrens, T., Chappell, A., Bui, E. (2016). Assimilating satellite imagery and visible-near-infrared spectroscopy to model and map soil loss by water erosion in Australia. Environmental Modelling & Software, 77, 156–167. https://doi.org/10.1016/j.envsoft.2015.11.024

49. Terekhanova, T. (2009). Quantification of water and nutrient flows on a river catchment scale under scarce data conditions (A case study of Western Bug river basin, Ukraine). [Master’s thesis]. Dresden University of Technology, Dresden.

50. Thaler, S., Zessner, M., Weigl, M., Rechberger, H., Schilling, K., Kroiss, H. (2015). Possible implications of dietary changes on nutrient fluxes, environment and land use in Austria. Agricultural Systems, 136, 14–29. https://doi.org/10.1016/j.agsy.2015.01.006

51. The Water Code of Ukraine (1995). Law of Ukraine № 213/95-VR of 06.06.95. The Official Bulletin of the Verkhovna Rada (BVR), № 24. Retrieved February 10, 2024 from https://zakon.rada.gov.ua/laws/show/213/95-%D0%B2%D1%80#Text">https://zakon.rada.gov.ua/laws/show/213/95-%D0%B2%D1%80#Text [in Ukrainian]

52. Tränckner, J., Helm, B., Blumensaat, F., Terekhanova, T. (2012). Integrated Water Resources Management: Approach to Improve River Water Quality in the Western Bug River Basin. In T. Nałęcz, (Ed.), Transboundary Aquifers in the Eastern Borders of The European Union. NATO Science for Peace and Security Series C: Environmental Security. Springer: Dordrecht. https://doi.org/10.1007/978-94-007-3949-9_6

53. Tsige, M.G., Malcherek, A., Seleshi, Y. (2022). Improving the Modified Universal Soil Loss Equation by Physical Interpretation of Its Factors. Water, 14 (9), Article 1450. https://doi.org/10.3390/w14091450

54. Tuomisto, H.L., Hodge, I.D., Riordan, P., Macdonald, D.W. (2012). Does organic farming reduce environmental impacts? – A meta-analysis of European research. Journal of Environmental Management, 112, 309–320. https://doi.org/10.1016/j.jenvman.2012.08.018

55. Van Puijenbroek, P.J.T.M., Beusen, A.H.W., Bouwman, A.F. (2019). Global nitrogen and phosphorus in urban wastewater based on the Shared Socio-economic Pathways. Journal of Environmental Management, 231, 446–456. https://doi.org/10.1016/j.jenvman.2018.10.048

56. Venohr, M., Hirt, U., Hofmann, J., Opitz, D., Gericke, A., Wetzig, A., Ortelbach, K., Natho, S., Neumann, F., Hürdler, J. (2009). The Model System MONERIS, version 2.14.1 vba, Manual. Leibniz-Institute of Freshwater Ecology and Inland Fisheries in the Forschungsverbund, Berlin e.V.

57. Wendland, F., Kunkel, R., Voigt, H.-J. (2004). Assessment of groundwater residence times in the pore aquifers of the River Elbe Basin. Environmental Geology, 46 (1), 1–9. https://doi.org/10.1007/s00254-004-1013-4

58. Zvomuya, F., Rosen, C.J., Russelle, M.P., Gupta, S.C. (2003). Nitrate leaching and nitrogen recovery following application of polylefincoated urea to potato. Journal of environmental quality, 32 (2), 480–489.

About ׀ Editorial board ׀ Ethics ׀ For authors ׀ For reviewers ׀ Archive ׀ Contacts