ATMOSPHERIC RIVERS: POTENTIAL INFLUENCE ON ATMOSPHERIC PROCESSES AND METEOROLOGICAL PHENOMENA OVER THE TERRITORY OF UKRAINE

Shchehlov O.
Ukrainian Hydrometeorological Institute of the State Emergency Service of Ukraine and the National Academy of Sciences of Ukraine
https://orcid.org/0000-0001-5702-6285

Shpyg V.
Ukrainian Hydrometeorological Institute of the State Emergency Service of Ukraine and the National Academy of Sciences of Ukraine
https://orcid.org/0000-0003-1055-7120

Fomichev N.
Taras Shevchenko National University of Kyiv
https://orcid.org/0000-0003-1055-7120

DOI: http://doi.org/10.15407/Meteorology2022.02.004

Keywords: atmospheric river, atmospheric circulation, advection, moisture, dangerous weather phenomena

Abstract

The article presents an overview of publications on the atmospheric rivers (AR) issue. AR events in recent years have got more attention from researchers due to the association with extreme precipitation. Several parameters are used to identify AR event, such as integrated water vapor (IWV) and integrated water transport (IVT). Several approaches to identifying and tracking AR have been developed and mentioned in this article. The foreign experience regarding AR connection with the general circulation of the atmosphere was analyzed. Most of the research on AR are devoted to the Eastern North Pacific and the North Atlantic regions. The key role in the variation of AR occurrence over different areas of those two regions is given to the interaction of the atmospheric circulation patterns, such as Arctic Oscillation and the Pacific North American Oscillation in the North Pacific region, and in the North Atlantic by the Arctic and North Atlantic Oscillation. There also stable connections of the AR phenomenon with the El Niño –Southern Oscillation and the Madden — Julian Oscillation are noted. A significant part of the works is devoted to studying AR influence on pre- cipitation extremes. AR is typically associated with a low-level jet stream and is formed in the warm conveyor belt zone of a cyclone, mainly in extratropical latitudes. An overview of modern research on atmospheric moisture and the heavy precipitation formation conditions over the territory of Ukraine shows that the vast majority of scientific works are based on the series of individual cases, and therefore cannot give an answer to the question of the potential role of AR or moisture advection in the processes of precipitation formation on a regional scale in the climatic aspect. The relevance of studying the AR issue consists of three aspects: the connection of AR events with large-scale circulation; the role of AR in the transport of moisture at the macro- and mesoscale levels; the connection of the AR with extreme and dangerous meteorological phenomena, in particular, heavy precipitation.

References

1. Balabukh V.A. Variability of power convection in Ukraine Global Regional Climate Changes [ed. Osadchy V.I]. // Kyiv: Nika-Center, 2011. 161-173.

2. Balabukh V.O. The trajectories of cyclones causing extreme precipitation in Ukraine during the warm period of the year. Nauk. Pratsi UkrNDHMI. Vol.253. Nika-Center, 2004. 103-119.

3. Zabolotska T.M., Kryvobok O.A., Shpyg V.M. Liquid water content of frontal cloud systems estimated from satellite data during warm period of year. Hydrology, hydrochemistry and hydroecology. 2018. Vol. 3 (50). 66-72.

4. Zabolotska T.M., Kryvobok O.A., Shpyg V.M. Water balance of frontal cloud systems in cold period estimated by satellite measurements.Physical geography and geomorphology. 2018. Vol. 2 (90). 70-75.]

5. Zabolotska T.M., Pidgurska V.M., Shpital T.M. Extreme precipitation in Ukraine and possible reasons for their formation. Nauk. Pratsi UkrNDHMI. 2006. Vol. 255. pp. 25-41.

6. Zabolotska T.M., Shpyg V.M. Synoptic conditions of formation of dangerous weather phenomena over Ukraine. Part I. Hydrology, hydrochemistry and hydroecology. 2018. Vol. 1 (48). 57-67.

7. T.M. Zabolotska, V.M. Shpyg Transformation of baric field and cloudiness in the case of long-term and heavy precipitation. Scientific works of the Ukrainian Research Hydrometeorological Institute. 2014. Vol. 266. 12-19.

8. Climate of Ukraine / Ed. V.M. Lipinsky, V.A. Dyachuka, V.M. Babichenko. K.: Raevsky Publishing House. 2003. 343p.

9. Palamarchuk L, Sokur K., Zabolotska T. Dynamics of rainfall intensity and mesostructural characteristics of their fields in the warm period of the year in the plain part of Ukraine. Hydrology, hydrochemistry and hydrogeology. 2019. Vol. 4. 95-111.

10. Palamarchuk L.V., Shpyg V.M., Guda K.V. Conditions of formation of strong cold season precipitation in the plains territory of Ukraine. Physical geography and geomorphology. 2014. Vol. 2 (74). 110-120.

11. RomashT., ShpygV.The peculiarities of stock moisture changes in atmosphere during heavy snowfalls. Journal of cartography. 2013. Vol. 7. 219-235.]

12. Semenova, I. G., Nazhmudinova, O. M. Regional Synoptics: textbook. Odesa State Environmental University. Odesa, 2019. 212 p.

13. Akbary M., Salimi S., Hosseini S. A., Hosseini M. Spatio-temporal changes of atmospheric rivers in the Middle East and North Africa region. International Journal of Climatology. 2019. Vol. 39(10). 3976-3986 https://doi.org/10.1002/joc.6052

14. Atmospheric River. Glossary of Meteorology. American Meteorological Society. 2020. URL: https://glossary.ametsoc.org/wiki/Atmospheric_river(дата звернення: 28.11.2022)

15. Atmospheric Rivers. / eds. F. Ralph F., M. Dettinger, J. Rutz, D. Waliser. Springer, Cham. 2020. 251. https://doi.org/10.1007/978-3-030-28906-5_1

16. Benedict I., Ødemark K., Npien T., Moore R. Large-scale flow patterns associated with extreme precipitation and atmospheric rivers over Norway Mon. Weather Rev. 2019. Vol. 147(4). 1415-1428. https://doi.org/10.1175/MWR-D-18-0362.1

17. Bozkurt D., Sen O.L., Ezber Y., Guan B., Viale M., Caglar F. Influence of African atmospheric rivers on precipitation and snowmelt in the near East’s highlands. Journal of Geophysical Research: Atmospheres. 2021. Vol.126(4). e2020JD033646. https://doi.org/10.1029/2020JD033646

18. Cordeira J. M., Ralph F. M., B. J. Moore. The development and evolution of two atmospheric rivers in proximity to western North Pacific tropical cyclones in October 2010. Monthly Weather Review. 2013. Vol. 141(12). 4234–4255. https://doi.org/10.1175/MWR-D-13-00019.1

19. Davolio S., Della Fera S., Laviola S., Miglietta M. M., Levizzani V. Heavy Precipitation over Italy from the Mediterranean Storm “Vaia” in October 2018: Assessing the Role of an Atmospheric River. Monthly Weather Review. 2020. Vol. 148(9). 3571-3588, https://doi.org/10.1175/MWR-D-20-0021.1

20. Dee D. P., Uppala S. M., Simmons A. J., Berrisford P., Poli P., Kobayashi S., et al. The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quarterly Journal of the Royal Meteorological Society. 2011. Vol. 137(656). 553–597. https://doi.org/10.1002/qj.828

21. Dettinger M. D., Ralph F. M., Rutz J. J. Empirical return periods of the most intense vapor transports during historical atmospheric river landfalls on the U.S. West Coast. Journal of Hydrometeorology. 2018. Vol. 19(8). 1363–1377. https://doi.org/10.1175/JHM-D-17-0247.1

22. Dhana Lakshmi D., Satyanarayana A.N.V. Influence of atmospheric rivers in the occurrence of devastating flood associated with extreme precipitation events over Chennai using different reanalysis data sets. Atmospheric Research. 2019. Vol. 215. 12-36. ISSN 0169-8095. https://doi.org/10.1016/j.atmosres.2018.08.016

23. Doiteau B, Dournaux M, Montoux N, Baray J-L. Atmospheric Rivers and Associated Precipitation over France and Western Europe: 1980–2020 Climatology and Case Study. Atmosphere. 2021. Vol. 12(8):1075.https://doi.org/10.3390/atmos12081075

24. Gelaro R., McCarty W., Suárez M. J., Todling R., Molod A., Takacs L., et al. The Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2). Journal of Climate. 2017. Vol. 30(14). 5419–5454. https://doi.org/10.1175/JCLI-D-16-0758.1

25. Gorodetskaya I. V., Tsukernik M., Claes K., Ralph M. F., Neff W. D., Van Lipzig N. P. M. The role of atmospheric rivers in anomalous snow accumulation in East Antarctica. Geophysical Research Letters. 2014. Vol. 41(17). 6199–6206. https://doi.org/10.1002/2014GL060881

26. Gorodetskaya I., Rowe P., Zou X., Chyhareva A., Krakovska S., Cordero R. Antarctic Peninsula warming and precipitation phase transition during atmospheric river events. DACH2022 Leipzig, Deutschland, 21–25 Mar 2022, DACH2022-309. https://doi.org/10.5194/dach2022-309

27. Guan B., Molotch N.P., Waliser D.E. et al. The 2010/2011 snow season in California’s Sierra Nevada: role of atmospheric rivers and modes of large-scale variability. Water Resources Research. 2013. Vol. 49 (10). 6731–6743. https://doi.org/10.1002/wrcr.20537

28. Guan B., Waliser D. E. Detection of atmospheric rivers: Evaluation and application of an algorithm for global studies. J. Geophys. Res.-Atmos. 2015. Vol. 120(24). 12514–12535. https://doi.org/10.1002/2015JD024257

29. Guan B., Waliser D. E. Tracking atmospheric rivers globally: Spatial distributions and temporal evolution of life cycle characteristics. Journal of Geophysical Research Atmospheres. 2019. Vol. 124(23). 12523–12552. https://doi.org/10.1029/2019JD031205

30. Guan B., Waliser D. E., Ralph F. M. An inter-comparison between reanalysis and dropsonde observations of the total water vapor transport in individual atmospheric rivers. Journal of Hydrometeorology. 2018. Vol. 19(2). 321–337. https://doi.org/10.1175/JHM-D-17-0114.1

31. Hurrell, J.W. Decadal Trends in the North Atlantic Oscillation. Science (New York, N.Y.). 1995. Vol. 269. 676-689. https://doi.org/10.1126/science.269.5224.676

32. Ionita M., Viorica N., Guan B. Rivers in the sky, flooding on the ground: The role of atmospheric rivers in inland flooding in central Europe. Hydrology and Earth System Sciences. Vol. 24(11). 2020. 5125–514. https://doi.org/10.5194/hess-24-5125-2020

33. Kamae Y., Imada Y., Kawase H., Mei W. Atmospheric Rivers Bring More Frequent and Intense Extreme Rainfall Events Over East Asia Under Global Warming. Geophysical Research Letters. 2021. 48(24). e2021GL096030. https://doi.org/10.1029/2021GL096030

34. Lavers D. A., Allan R. P., Wood E. F., Villarini G., Brayshaw D. J., Wade A. J. Winter floods in Britain are connected to atmospheric rivers. Geophysical Research Letters. 2011. Vol. 38(23). L23803. https://doi.org/10.1029/2011GL049783

35. Lavers D.A., Villarini G. The contribution of atmospheric rivers to precipitation in Europe and the United States.Journal of Hydrology. 2015. Vol. 522. 382–390. https://doi.org/10.1016/j.jhydrol.2014.12.010

36. Lavers D.A., Villarini G. The nexus between atmospheric rivers and extreme precipitation across Europe. Geophys Res Lett. 2013. Vol. 40(12). 3259–3264. https://doi.org/10.1002/grl.50636

37. Liberato M.L.R., Ramos A.M., Trigo R.M., Trigo I.F., Dur´an-Quesada A.M., Nieto R., Gimeno L. Moisture Sources and Large-Scale Dynamics Associated with a Flash Flood Event. American Geophysical Union (AGU): Chapter 11. 2012. 111–126. https://doi.org/10.1029/2012GM001244

38. Mattingly K.S., Mote T.L., Fettweis X. Atmospheric river impacts on Greenland Ice Sheet surface mass balance. Journal of Geophysical Research: Atmospheres. 2018. Vol. 123(16). 8538–8560. https://doi.org/10.1029/2018JD028714

39. Michel C., Sorteberg A., Eckhardt S., Weijenborg C., Stohl A., Cassiani M. Characterization of the atmospheric environment during extreme precipitation events associated with atmospheric rivers in Norway - Seasonal and regional aspects. Weather and Climate Extremes. 2021. Vol. 34. 100370. ISSN 2212-0947. https://doi.org/10.1016/j.wace.2021.100370

40. Mundhenk B.D., Barnes E.A., Maloney E.D. All-season climatology and variability of atmospheric river frequencies over the North Pacific. Journal of Climate. 2016. Vol. 29 (13). 4885–4903. https://doi.org/10.1175/JCLI-D-15-0655.1

41. Neiman P. J., Ralph F. M., Wick G. A., Lundquist J. D., Dettinger M. D. Meteorological characteristics and overland precipitation impacts of atmospheric rivers affecting the West Coast of North America based on eight years of SSM/I satellite observations. Journal of Hydrometeorology. 2008. Vol. 9(1). 22–47. https://doi.org/10.1175/2007JHM855.1

42. Ralph F. M., Neiman P. J., Wick G. A. and Coauthors. Dropsonde observations of total water vapor transport within North Pacific atmospheric rivers. Journal of Hydrometeorology. 2017. Vol. 18(9). 2577–2596. https://doi.org/10.1175/JHM-D-17-0036.1

43. Ralph F. M., Neiman P. J., Wick G. A. Satellite and CALJET aircraft observations of atmospheric rivers over the eastern North Pacific Ocean during the winter of 1997/98. Monthly Weather Review. 2004. Vol. 132(7). 1721–1745. https://doi.org/10.1175/1520-0493(2004)132<1721:SACAOO>2.0.CO;2

44. Ralph F.M., Neiman P.J., Wick G.A., Gutman S.I., Dettinger M.D., Cayan D.R., White A.B. Flooding on California’s Russian River: role of atmospheric rivers. Geophysical Research Letters. 2006. Vol. 33(13). L13801. https://doi.org/10.1029/2006GL026689

45. Ralph F.M., Rutz J.J., Cordeira J.M., Dettinger M.D., Anderson M., Reynolds D., Schick L.J., Smallcomb C. A scale to characterize the strength and impacts of atmospheric rivers. Bull. Am. Meteorol. Soc. 2019. Vol. 100(2). 269-289. https://doi.org/10.1175/BAMS-D-18-0023.1

46. Rutz, J. J., W. J. Steenburgh, and F. M. Ralph, : The inland penetration of atmospheric rivers over western North America: A Lagrangian analysis. Monthly Weather Review. 2015. Vol. 143(5). 1924–1944. https://doi.org/10.1175/MWR-D-14-00288.1

47. Schicker I., Radanovics S., Seibert P. Origin and transport of Mediterranean moisture and air. Atmospheric Chemistry and Physics Discussions. 2009. Vol.10. 5089–5105. https://doi.org/10.5194/acp-10-5089-2010

48. Sellars S. L., Kawzenuk B., Nguyen P., Ralph F. M., Sorooshian S. Genesis, pathways, and terminations of intense global water vapor transport in association with large-scale climate patterns. Geophysical Research Letters. 2017. Vol. 44(24). 12,465-12,475. https://doi.org/10.1002/2017GL075495

49. Shields C.A. and Coauthors. Atmospheric River Tracking Method Intercomparison Project (ARTMIP): Project goals and experimental design. Geoscientific Model Development. 2018. Vol. 11(6). 2455–2474. https://doi.org/10.5194/gmd-11-2455-2018

50. Terpstra A., Gorodetskaya I. V., Sodemann H. Linking sub-tropical evaporation and extreme precipitation over East Antarctica: An atmospheric river case study. Journal of Geophysical Research: Atmospheres. 2021. Vol. 126(9). e2020JD033617. https://doi.org/10.1029/2020JD033617

51. Thapa K., Endreny T. A., Ferguson C. R. Atmospheric rivers carry nonmonsoon extreme precipitation into Nepal. Journal of Geophysical Research: Atmospheres. 2018. Vol. 123(11). 5901–5912. https://doi.org/10.1029/2017JD027626

52. Vellosa Lyngwa R., Ahmad Nayak M. Atmospheric river linked to extreme rainfall events over Kerala in August 2018. Atmospheric Research. 2021. Vol. 253. 105488. ISSN 0169-8095, https://doi.org/10.1016/j.atmosres.2021.105488

53. Waliser D., Guan B. Extreme winds and precipitation during landfall of atmospheric rivers. Nat. Geosci. 2017. Vol. 10. pp. 179–184. https://doi.org/10.1038/NGEO2894

54. Yang Y., Zhao T., Ni G., Sun T. Atmospheric rivers over the Bay of Bengal lead to northern Indian extreme rainfall. International Journal of Climatology. 2018. Vol. 38(2). 1010–1021. https://doi.org/10.1002/joc.5229

55. Zhou Y., Kim H., Guan B. Life cycle of atmospheric rivers: Identification and climatological characteristics. Journal of Geophysical Research: Atmospheres. 2018. Vol. 123(22). 12,715–12,725. https://doi.org/10.1029/2018JD029180

56. Zhu Y., Newell R. E. A proposed algorithm for moisture fluxes from atmospheric rivers. Monthly Weather Review. 1998. Vol. 126(3). 725–735. https://doi.org/10.1175/1520-0493(1998)126<0725:APAFMF>2.0.CO;2

About ׀ Editorial board ׀ Ethics ׀ For authors ׀ For reviewers ׀ Archive ׀ Contacts