SPECTRAL MICROPHYSICAL CLOUD MODEL FOR ASSESSMENT OF PARAMETERIZATION OF WARM CLOUD AND PRECIPITATION FORMATION PROCESSES IN MODELS WITH BULK MICROPHYSICS

Krakovska S.
Ukrainian Hydrometeorological Institute of the State Emergency Service of Ukraine and the National Academy of Sciences of Ukraine, Kyiv
https://orcid.org/0000-0001-9972-0937

DOI: http://doi.org/10.15407/Meteorology2022.02.011

Keywords: spectral model, cloud microphysics, bulk parameterization of cloud and precipitation formation, autoconversion, accretion, sedimentation, coagulation

Abstract

Several series of numerical experiments were conducted using the one-dimensional spectral microphysical cloud model developed at UkrHMI for marine stratiform-convective clouds of the surface layer and diagrams were constructed to determine the coefficients of coagulation of cloud droplets and precipitation drops. The rates of autoconversions, accretion, and sedimentation were estimated based on generalized (bulk) parameterizations of microphysics from regional atmosphere models (Kessler, Beheng, and Khairutdinov-Kogan) and corresponding characteristics from the spectral (bin) cloud model. The obtained results have been analysed and the limits where the bulk parameterizations can be applied have been determined. Based on spectral model estimations new nonlinear formulations are proposed for parameterizations of sedimentation rates of droplet concentration and water content in models with bulk microphysics, but they need further approbation and estimation of biases against experimental measurements. Evolution in time and at vertical cloud levels of precipitation drops’ spectra are presented and analysed showing more natural two maxima shapes observed in clouds as a rule.

References

1. Buikov M.V., Pirnach A.M. Numerical model of two-phase stratus cloud with accounting on microstructure. Notes of USSR Ak.Sc. Atmosphere and Ocean Physics. 1973. V.9. N.5. P. 486-499. [In Russian]

2. Krakovska S.V., Pirnach G.M. Mesoscale and microphysical properties of frontal rainbands and precipitation of explosive-type deepening cyclone over the Antarctic Peninsula. Ukrainian Antarctic Journal. 2003. N.1. P. 85-92. [In Ukrainian]

3. Minervin V.Ye., Mazin I.P., Burkovskaia S.N. Some new data on liquid water content of clouds. Trudy CAO. 1958. V.19. P.93-32. [In Russian]

4. Shishkin N.S. Clouds, precipitation and thunder electricity. L.: Gidrometeoizdat. 1964. 280 p. [In Russian]

5. Beheng, K. D. (1994). A parameterization of warm cloud microphysical conversion processes. Atmos. Res. 33. 193–206.

6. Brenguier, J.L. (1991). Parameterization of the condensation process: A theoretical approach. J. Atmos. Sci. 48. V. 264. 282.

7. Bott, A. A. (2000). Flux method for the numerical solution of the stochastic collection equation: extension to two-dimensional particle distributions. J. Atmos. Sci. 57. 284 – 294.

8. Curry J.A., and V.I. Khvorostyanov. (2012). Assessment of some parameterizations of heterogeneous ice nucleation in cloud and climate models. J. Atmos. Chem. Phys., 12. – 1151-1172.

9. Douville, H., K. Raghavan, J. Renwick, R.P. Allan, P.A. Arias, M. Barlow, R. Cerezo-Mota, A. Cherchi, T.Y. Gan, J. Gergis, D. Jiang, A. Khan, W. Pokam Mba, D. Rosenfeld, J. Tierney, and O. Zolina (2021). Water Cycle Changes. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp. 1055–1210, doi: 10.1017/9781009157896.010.

10. Erlick, C., A. Khain, M. Pinsky, and Y. Segal. (2005). The effect of wind velocity fluctuations on drop spectrum broadening in stratocumulus clouds. Atmos.Res., 75. – 15-45.

11. Kessler, E. (1969). On the Distribution and Continuity of Water Substance in Atmospheric Circulation. – Meteor. Monogr., No. 32, Amer. Meteor. Soc. – 84 pp.

12. Khain, A.P., Ovtchinnikov, M., Pinsky, M., Pokrovsky, A., Krugliak, H. (2000). Notes on the state-of-the-art numerical modeling of cloud microphysics. Atmos. Res., 55. – 159 – 224.

13. Khain, A. P., and M. Pinsky. (2018). Physical processes in clouds and cloud modeling. – Cambridge University Press. – 626 pp.

14. Khairoutdinov, M., and Y. Kogan. (2000). A new cloud physics parameterization in a large-eddy simulation model of marine stratocumulus. Mon. Wea. Rev., 128. 229–243.

15. Khvorostyanov, V.I. (1995). Mesoscale processes of cloud formation, cloud-radiation interaction and their modeling with explicit cloud microphysics. Atmos. Res., 39. 1-67.

16. Khvorostyanov, V.I., and J.A. Curry. (2002). Terminal velocities of droplets and crystals: power laws with continuous parameters over the size spectrum. J. Atmos. Sci., 59. 1872–1884.

17. Krakovska, S., Brenguier, J.-L., Geoffroy, O., Sandu, I. (2007). Tests of the bulk cloud microphysics parameterizations in the detailed explicit cloud model. Geophysical Research Abstracts, Vol. 9. 00217. – SRef-ID: 1607-7962/gra/EGU2007-A-00217.

18. Krakovskaia, S.V. and A.M. Pirnach. (1998). Theoretical study of the microphysical structure of mixed stratiform frontal clouds and their precipitation. Atmos. Res., 47-48. 491-503.

19. Langmuir I. (1948). The growth of particles in smokes and clouds and the production of snow from supercooled cloud. Proc. Am. Philos. Soc. 92. 167.

20. Liu, Y., and P. H. Daum. (2004). Parameterization of the autoconversion process. Part I: Analytical formulation of the Kessler-type parameterizations. J. Atmos. Sci., 61. 1539–1548.

21. Liu, Y., P. H. Daum, R. McGraw, and R. Wood. (2006). Parameterization of the autoconversion process. Part II: Generalization of Sundqvist-Type Parameterizations. J. Atmos. Sci., 63. 1103–1109.

22. Morrison, H., J.A. Curry, V.I. Khvorostyanov. (2005). A new double-moment microphysics parameterization for application in cloud and climate models. Part 1: Description. J. Atmos. Sci., 62 (6). 1665-1677.

23. Morrison, H., Thompson, G., & Tatarskii, V. (2009). Impact of cloud microphysics on the development of trailing stratiform precipitation in a simulated squall line: Comparison of one-and two-moment schemes. Monthly weather review, 137(3), 991-1007.

24. Morrison, H., van Lier-Walqui, M., Fridlind, A. M., Grabowski, W. W., Harrington, J. Y., Hoose, C., Korolev, A., Kumjian, M. R., Milbrandt, J. A., Pawlowska, H., Posselt, D. J., Prat, O. P., Reimel, K. J., Shima, S. I., van Diedenhoven, B., and Xue, L. (2020). Confronting the Challenge of Modeling Cloud and Precipitation Microphysics. J. Adv. Model. Earth Sy., 12, e2019MS001689, https://doi.org/10.1029/2019MS001689.

25. Pirnach, A.M. and S.V. Krakovskaya. (1994). Numerical studies of dynamics and cloud microphysics of the frontal rainbands. Atmos. Res., 33. 333-365.

26. Pruppacher, H.R. and J.D. Klett. (1997). Microphysics of clouds and precipitation. – Kluwer. 954 pp.

27. Sedunov, Y.S. (1974). Physics of Drop Formation in the Atmosphere. – Wiley, NY. 234 pp.

28. Seifert, A., and K.D. Beheng. (2001). A double-moment parameterization for simulating autoconversion, accretion and self-collection. Atmos. Res., 59-60. 265–281.

29. Seifert, A., A. Khain, A. Pokrovsky, and K. D. Beheng. (2006). A comparison of spectral bin and two-moment bulk mixed-phase cloud microphysics. Atmos. Res., 80. 46–66.

30. Shpyg V., Budak I., Pishniak D., Poperechnyi P. (2013). The Application of Regional NWP Models to Operational Weather Forecasting in Ukraine. CAS Technical Conference (TECO) on “Responding to the Environmental Stressors of the 21st Century”: http://www.wmo.int/pages/prog/arep/cas/documents/Ukraine-NWPModels.pdf

31. Sundqvist, H. (1978). A parameterization scheme for non-convective condensation including prediction of cloud water content. Quart. J. Roy. Meteor. Soc., 104. 677–690.

32. Tiedtke, M. (1989). A comprehensive mass flux scheme for cumulus parameterization in large-scale models. Mon. Wea. Rev., 117. 1779-1800.

33. Wood, R., P.R. Field, and W.R. Cotton. (2002). Autoconversion rate bias in stratiform boundary layer cloud parameterizations. Atmos. Res., 65. 109–128.

About ׀ Editorial board ׀ Ethics ׀ For authors ׀ For reviewers ׀ Archive ׀ Contacts