THE OPTIMAL SETTINGS FOR THE ONLINE-INTEGRATED MODEL ENVIRO-HIRLAM IN ORDER TO SIMULATE THE ATMOSPHERE-CHEMISTRY INTERACTION FOR THE UKRAINIAN TERRITORY
Ukrainian Hydrometeorological Institute of SESU and NASU, Kyiv, Ukraine
https://orcid.org/0000-0001-9429-6209
Pysarenko Larysa
Ukrainian Hydrometeorological Institute of SESU and NASU, Kyiv, Ukraine
https://orcid.org/0000-0002-2885-0213
Abstract
References
1. Guziy A.M., Kovalets I.V., Kushchan A.A., Zhelezniak M.I. (2008). Numerical weather forecast system WRF-Ukraine. Math. Machines and Systems. 4. 123-131. [In Russian]
2. Doroshenko, A.Yu., Shpyg, V.M., Kushnirenko, R.V. (2020). Application of machine learning to improving numerical weather prediction. Problems in Programming. 2-3. 375-383. [In Ukrainian]
3. Zazimko R.V., Romanenko S.E., Ruban I.G., Ivanov S.V., Tuchkovenko Y.S., Derik O.V. (2020). High resolution modelling of severe wind patterns over the north-west Black Sea Region. Ukrainian Hydrometeorological Journal. 25. 5-16. [In Ukrainian]
4. Ivus, G., Pishniak, D., Shpyg, V. (2010). Estimation of atmosphere state reconstruction in the WRF-ARW model under cold fronts passing. Visnyk Odes’kogo derzhavnogo universitety. 9. 92-102. [In Russian]
5. Pirnach, G. (2008). Numerical modelling of cloudiness and precipitations in atmospheric front systems. Kyiv. Nika-Centr. 295. [In Ukrainian]
6. Prusov, V.A., Doroshenko, A.Yu. (2006). Physical and Mathematical Models, numerical methods of analysis and forecast of natural and technogenic processes in the atmosphere. Kyiv. Naukova Dumka. 542. [In Ukrainian]
7. Abdul-Razzak, H., Ghan, S.J. (2000). A parameterization of aerosol activation: 2. Multiple aerosol types. Journal of Geophysical Research. Vol. 105(D5). 6837–6844. https://doi.org/10.1029/1999JD901161
8. Appel, K. W., Bash, J. O., Fahey, K. M., Foley, K. M., Gilliam, R. C., Hogrefe, C., Hutzell, W. T., Kang, D., Mathur, R., Murphy, B. N., Napelenok, S. L., Nolte, C.G., Pleim, J.E., Pouliot, G.A., Pye H.O.T., Ran, L., Roselle, S. J., Sarwar, G., Schwede, D. B., Sidi, F. I., Spero, T. L., Wong, D. C. (2021). The Community Multiscale Air Quality (CMAQ) model versions 5.3 and 5.3.1: system updates and evaluation. Geoscientific Model Development. Vol. 14. 2867–2897, https://doi.org/10.5194/gmd-14-2867-2021
9. Baklanov, A., Korsholm, U.S., Nuterman R., Mahura A., Nielsen K.P., Sass B.H., Rasmussen A., Zakey A., Kaas E., Kurganskiy A.,Sørensen B., González-AparicioI. (2017). Enviro-HIRLAM online integrated meteorology–chemistry modelling system: strategy, methodology, developments and applications (v7.2). Geoscientific Model Development. Vol. 10. 2971–2999. https://doi.org/10.5194/gmd-10-2971-2017
10. Baklanov, A., Schlünzen, K., Suppan, P., Baldasano, J., Brunner, D., Aksoyoglu, S., Carmichael, G., Douros, J., Flemming, J., Forkel, R., Galmarini, S., Gauss, M., Grell, G., Hirtl, M., Joffre, S., Jorba, O., Kaas, E., Kaasik M., Kallos G., Kong X., Korsholm U., Kurganskiy A., Kushta J., Lohmann U., Mahura A., Manders-Groot A., Maurizi A., Moussiopoulos N., Rao S.T., Savage N., Seigneur C., Sokhi R.S., Solazzo E., Solomos, S., Sørensen, B., Tsegas, G., Vignati, E., Vogel, B., Zhang, Y. (2014). Online coupled regional meteorology chemistry models in Europe: current status and prospects. Atmospheric Chemistry and Physics. Vol. 14. 317–398. https://doi.org/10.5194/acp-14-317-2014
11. Baklanov, A., Zhang, Y. (2020). Advances in air quality modeling and forecasting. Global Transitions. Vol. 2. 261-270. https://doi.org/10.1016/j.glt.2020.11.001
12. Carlton, A. G., Turpin, B. J., Altieri, K. E., Seitzinger S. P., MathurR., Roselle S. J., Weber R.J. (2008). CMAQ model performance enhanced when in-cloud secondary organic aerosol is included:comparisons of organic carbon prediction with measurements. Environmental Science & Technology. Vol. 42. 8798–8802.https://doi.org/10.1021/es801192n
13. Cuxart, J., Bougeault, P., Redelsperger, J.-L. (2000). A turbulence scheme allowing for mesoscale and large eddy simulations. Quarterly Journal of the Royal Meteorological Society. Vol. 126. 1–30. https://doi.org/10.1002/qj.49712656202
14. Feichter, J., Kjellström, E., Rodhe, H., Dentener, F., Lelieveldi, J., Roelofs, G.-J. (1996). Simulation of the tropospheric sulfur cycle in a global climate model. Atmospheric Environment. Vol. 30. 1693–1707. https://doi.org/10.1016/1352-2310(95)00394-0
15. Flemming, J., Inness, A., Flentje, H., Huijnen, V., Moinat, P., Schultz, M. G., Stein, O. (2009). Coupling global chemistry transport models to ECMWF's integrated forecast system. Geoscientific Model Development. Vol. 2. 253–265. https://doi.org/10.5194/gmd-2-253-2009
16. Giaiotti, D., Oshurok, D., Skrynyk, O. (2018). The Chernobyl nuclear accident 137Cs cumulative depositions simulated by means of the CALMET/CALPUFF modelling system. Atmospheric Pollution Research. Vol. 9. Is. 3. 502-512. https://doi.org/10.1016/j.apr.2017.11.007
17. Grell, G., Peckham, S., Schmitz, R., Mc Keen, S., Frost, G., Skamarock, W., Eder, B. (2005). Fully coupled “online” chemistry within the WRF model. Atmospheric Environment. Vol. 39. 6957–6975. https://doi.org/10.1016/j.atmosenv. 2005.04.027
18. Ivanov, S., Pavlova, H., Palamarchuk, J., Ruban, I. (2015). Marine aerosols impact on atmospheric characteristics over ocean surface in frontal zones. Geophysical Research Abstracts. Vol. 17. P. 1-12.
19. Ivanov, S., Simmer, C., Palamarchuk, J., Bachner, S. (2008). Estimation of the systematic error of precipitation and humidity in the MM5 model. Advances in Geosciences. Vol. 16. 97–107. https://doi.org/10.5194/adgeo-16-97-2008.
20. Jung, J., Souri, A. H., Wong, D.C., Lee, S., Jeon, W., Kim, J., Choi, Y. (2019). The impact of the direct effect of aerosols on meteorology and air quality using aerosol optical depth assimilation during the KORUS-AQ campaign. Journal of Geophysical Research: Atmospheres. Vol. 124(14). 8303–8319. https://doi.org/10.1029/2019JD030641
21. Kang, J.-Y., Bae, S.Y., Park, R.-S., Han, J.-Y. (2019). Aerosol Indirect Effects on the Predicted Precipitation in a Global Weather Forecasting Model. Atmosphere. Vol. 10. 392. https://doi.org/10.3390/atmos10070392
22. Kim, Y., Wu, Y., Seigneur, C., Roustan, Y. (2018). Multi-scale modeling of urban air pollution: development and application of a Street-in-Grid model (v1.0) by coupling MUNICH (v1.0) and Polair3D (v1.8.1). Geoscientific Model Development. Vol. 11. 611–629. https://doi.org/10.5194/gmd-11-611-2018
23. Kovalets, I.V., Talerko, M., Synkevych, R., Koval, S. (2022). Estimation of Cs-137 emissions during wildfires and dust storm in Chernobyl Exclusion Zone in April 2020 using ensemble iterative source inversion method. Atmospheric Environment. Vol. 288. 119305. https://doi.org/10.1016/j.atmosenv.2022.119305
24. Lappalainen, H. K., Kerminen, V.-M., Petäjä, T., et al. (2016). Pan-Eurasian Experiment (PEEX): towards a holistic understanding of the feedbacks and interactions in the land–atmosphere–ocean–society continuum in the northern Eurasian region. Atmospheric Chemistry and Physics. Vol.16. 14421–14461. https://doi.org/10.5194/acp-16-14421-2016
25. Mahura, A., Baklanov, A., Petersen, C., Sattler, K., Amstrup, B., Nielsen, N.W. (2006). ISBA Scheme Performance in High Resolution Modelling for Low Winds Conditions. HIRLAM Newsletter. Vol. 49. 22–35
26. Miatselskaya N., Kabashnikov V., Milinevsky G., Chaikovsky A., Danylevsky V., Bovchaliuk V. (2016). Atmospheric aerosol distribution in the Belarus-Ukraine region by the GEOS–Chem model and AERONET measurements. International Journal of Remote Sensing. Vol. 37:14. 3181-3195. http://dx.doi.org/10.1080/01431161.2016.1194541
27. Nguyen, G. T., Shimadera, H., Sekiguchi, A., Matsuo, T., Kondo, A. (2019). Investigation of aerosol direct effects on meteorology and air quality in East Asia by using an online coupled modeling system. Atmospheric Environment. Vol. 207. 182-196. https://doi.org/10.1016/j.atmosenv.2019.03.017
28. O'Connor, F. M., Johnson, C. E., Morgenstern, O., AbrahamN. L., Braesicke P., Dalvi M., Folberth G. A., Sanderson M. G., Telford P. J., Voulgarakis A., Young P. J., Zeng G., Collins W. J., Pyle J. A. (2014). Evaluation of the new UKCA climate-composition model – Part 2: The Troposphere Geoscientific Model Development. Vol. 7. 41–91. https://doi.org/10.5194/gmd-7-41-2014
29. Palamarchuk I., Ivanov S., Ruban I., Pavlova H. (2016). Influence of aerosols on atmospheric variables in the HARMONIE model. Atmospheric Research. Vol. 169. 539-546. https://doi.org/10.1016/j.atmosres.2015.08.001
30. Sass, B.H. (2002). A research version of the STRACO cloud scheme. Technical Report 02-10. Danish Meteorological Institute, Copenhagen.
31. Savage, N. H., Agnew, P., Davis, L. S., Ordóñez, C., Thorpe, R., Johnson, C. E., O'Connor, F. M., Dalvi, M. (2013). Air quality modelling using the Met Office Unified Model (AQUM OS24-26): model description and initial evaluation. Geoscientific Model Development. Vol. 6. 353–372. https://doi.org/10.5194/gmd-6-353-2013
32. Savenets, M., Pysarenko, L., Krakovska, S., Mahura, A. (2022). Integrated modelling for assessment the influence of aerosol feedbacks on a regional scale as a result of accidental wildfires and land cover changes in Ukraine. EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022. EGU22-4792. https://doi.org/10.5194/egusphere-egu22-4792
33. Savijärvi, H. (1990). Fast Radiation Parameterization Schemes for Mesoscale and Short-Range Forecast Models. Journal of Applied Meteorology. Vol. 29. 437–447.https://doi.org/10.1175/1520-0450(1990)029%3C0437:FRPSFM%3E2.0.CO;2
34. Turos, O.I., Petrosian, A.A., Maremukha, T.P., Morhulova V.V. (2018). Advantages of the use of risk assessment for the health of the population at the substantiation of the sizes of sanitary-and-protective zones for thermal power objects. Environment & Health. 3(88). 45-49. https://doi.org/10.32402/dovkil2018.03.045
35. Vignati, E., Wilson, J., Stier, P. (2004). M7: An efficient size-resolved aerosol microphysics module for large-scale aerosol transport models. Journal of Geophysical Reaearch. Vol. 109(D22). D22202. https://doi.org/10.1029/2003JD004485
36. Vogel, B., Vogel, H., Bäumer, D., Bangert, M., Lundgren, K., Rinke, R., Stanelle, T. (2009). The comprehensive model system COSMO-ART—Radiative impact of aerosol on the state of the atmosphere on the regional scale. Atmospheric Chemistry and Physics. Vol. 9. 8661–8680. https://doi.org/10.5194/acp-9-8661-2009
37. Zaveri, R.A., Peters, L.K. (1999). A new lumped structure photochemical mechanism for large-scale applications. Journal of Geophysical Research. Vol. 104 (D23). 30387-30415. https://doi.org/10.1029/1999JD900876
38. Zhang Y. (2008). Online-coupled meteorology and chemistry models: history, current status, and outlook. Atmospheric Chemistry and Physics. Vol. 8. 2895-2932. https://doi.org/10.5194/acp-8-2895-2008