THE OPTIMAL SETTINGS FOR THE ONLINE-INTEGRATED MODEL ENVIRO-HIRLAM IN ORDER TO SIMULATE THE ATMOSPHERE-CHEMISTRY INTERACTION FOR THE UKRAINIAN TERRITORY

Savenets Mykhailo
Ukrainian Hydrometeorological Institute of SESU and NASU, Kyiv, Ukraine
https://orcid.org/0000-0001-9429-6209

Pysarenko Larysa
Ukrainian Hydrometeorological Institute of SESU and NASU, Kyiv, Ukraine
https://orcid.org/0000-0002-2885-0213

DOI: http://doi.org/10.15407/Meteorology2022.02.035

Keywords: modelling, domain, meteorological parameters, atmospheric chemistry, aerosol effects

Abstract

The necessity of studying complicated feedbacks in the atmosphere and their further implementation in numerical models caused the development of online-integrated modelling. Due to the requirements of huge computer resources, this type of modelling is still not broadly available in Ukraine. The paper presents the analysis of optimal settings and input data towards the use of the online-integrated model Enviro-HIRLAM for the Ukrainian territory. Enviro-HIRLAM could be used to simulate the complicated atmosphere-chemistry interaction and include the role of direct and indirect aerosol effects on the atmospheric processes. Based on the numerous simulations using Enviro-HIRLAM while conducting two HPC-Europa3 projects, the optimal settings and input data for the Ukrainian territory were found. It is possible to define standard boundaries for a domain covering the entire Ukrainian territory with 5-km horizontal resolution. This domain does not depend on prevailing synoptic processes because it is used as a downscaling from the 15-km resolution domain, which covers large territories and considers atmospheric circulation. Further downscaling to 2 km and 1.5 km horizontal resolution allows studying the urbanization effects on the atmosphere. The paper describes settings which depend on available computer resources: dynamic time step, number of tasks and nodes, number of sub-domains, etc. We present the possible datasets which could be used for meteorological and atmospheric composition initial and boundary conditions for the Ukrainian territory. Moreover, the possible land-use/ land cover datasets and emission inventories are also given. Overall, this setting and input data allow users to run Enviro-HIRLAM using modes which include direct, indirect, or both (direct + indirect) aerosol effects. However, the control run is preferable for result comparison.

References

1. Guziy A.M., Kovalets I.V., Kushchan A.A., Zhelezniak M.I. (2008). Numerical weather forecast system WRF-Ukraine. Math. Machines and Systems. 4. 123-131. [In Russian]

2. Doroshenko, A.Yu., Shpyg, V.M., Kushnirenko, R.V. (2020). Application of machine learning to improving numerical weather prediction. Problems in Programming. 2-3. 375-383. [In Ukrainian]

3. Zazimko R.V., Romanenko S.E., Ruban I.G., Ivanov S.V., Tuchkovenko Y.S., Derik O.V. (2020). High resolution modelling of severe wind patterns over the north-west Black Sea Region. Ukrainian Hydrometeorological Journal. 25. 5-16. [In Ukrainian]

4. Ivus, G., Pishniak, D., Shpyg, V. (2010). Estimation of atmosphere state reconstruction in the WRF-ARW model under cold fronts passing. Visnyk Odes’kogo derzhavnogo universitety. 9. 92-102. [In Russian]

5. Pirnach, G. (2008). Numerical modelling of cloudiness and precipitations in atmospheric front systems. Kyiv. Nika-Centr. 295. [In Ukrainian]

6. Prusov, V.A., Doroshenko, A.Yu. (2006). Physical and Mathematical Models, numerical methods of analysis and forecast of natural and technogenic processes in the atmosphere. Kyiv. Naukova Dumka. 542. [In Ukrainian]

7. Abdul-Razzak, H., Ghan, S.J. (2000). A parameterization of aerosol activation: 2. Multiple aerosol types. Journal of Geophysical Research. Vol. 105(D5). 6837–6844. https://doi.org/10.1029/1999JD901161

8. Appel, K. W., Bash, J. O., Fahey, K. M., Foley, K. M., Gilliam, R. C., Hogrefe, C., Hutzell, W. T., Kang, D., Mathur, R., Murphy, B. N., Napelenok, S. L., Nolte, C.G., Pleim, J.E., Pouliot, G.A., Pye H.O.T., Ran, L., Roselle, S. J., Sarwar, G., Schwede, D. B., Sidi, F. I., Spero, T. L., Wong, D. C. (2021). The Community Multiscale Air Quality (CMAQ) model versions 5.3 and 5.3.1: system updates and evaluation. Geoscientific Model Development. Vol. 14. 2867–2897, https://doi.org/10.5194/gmd-14-2867-2021

9. Baklanov, A., Korsholm, U.S., Nuterman R., Mahura A., Nielsen K.P., Sass B.H., Rasmussen A., Zakey A., Kaas E., Kurganskiy A.,Sørensen B., González-AparicioI. (2017). Enviro-HIRLAM online integrated meteorology–chemistry modelling system: strategy, methodology, developments and applications (v7.2). Geoscientific Model Development. Vol. 10. 2971–2999. https://doi.org/10.5194/gmd-10-2971-2017

10. Baklanov, A., Schlünzen, K., Suppan, P., Baldasano, J., Brunner, D., Aksoyoglu, S., Carmichael, G., Douros, J., Flemming, J., Forkel, R., Galmarini, S., Gauss, M., Grell, G., Hirtl, M., Joffre, S., Jorba, O., Kaas, E., Kaasik M., Kallos G., Kong X., Korsholm U., Kurganskiy A., Kushta J., Lohmann U., Mahura A., Manders-Groot A., Maurizi A., Moussiopoulos N., Rao S.T., Savage N., Seigneur C., Sokhi R.S., Solazzo E., Solomos, S., Sørensen, B., Tsegas, G., Vignati, E., Vogel, B., Zhang, Y. (2014). Online coupled regional meteorology chemistry models in Europe: current status and prospects. Atmospheric Chemistry and Physics. Vol. 14. 317–398. https://doi.org/10.5194/acp-14-317-2014

11. Baklanov, A., Zhang, Y. (2020). Advances in air quality modeling and forecasting. Global Transitions. Vol. 2. 261-270. https://doi.org/10.1016/j.glt.2020.11.001

12. Carlton, A. G., Turpin, B. J., Altieri, K. E., Seitzinger S. P., MathurR., Roselle S. J., Weber R.J. (2008). CMAQ model performance enhanced when in-cloud secondary organic aerosol is included:comparisons of organic carbon prediction with measurements. Environmental Science & Technology. Vol. 42. 8798–8802.https://doi.org/10.1021/es801192n

13. Cuxart, J., Bougeault, P., Redelsperger, J.-L. (2000). A turbulence scheme allowing for mesoscale and large eddy simulations. Quarterly Journal of the Royal Meteorological Society. Vol. 126. 1–30. https://doi.org/10.1002/qj.49712656202

14. Feichter, J., Kjellström, E., Rodhe, H., Dentener, F., Lelieveldi, J., Roelofs, G.-J. (1996). Simulation of the tropospheric sulfur cycle in a global climate model. Atmospheric Environment. Vol. 30. 1693–1707. https://doi.org/10.1016/1352-2310(95)00394-0

15. Flemming, J., Inness, A., Flentje, H., Huijnen, V., Moinat, P., Schultz, M. G., Stein, O. (2009). Coupling global chemistry transport models to ECMWF's integrated forecast system. Geoscientific Model Development. Vol. 2. 253–265. https://doi.org/10.5194/gmd-2-253-2009

16. Giaiotti, D., Oshurok, D., Skrynyk, O. (2018). The Chernobyl nuclear accident 137Cs cumulative depositions simulated by means of the CALMET/CALPUFF modelling system. Atmospheric Pollution Research. Vol. 9. Is. 3. 502-512. https://doi.org/10.1016/j.apr.2017.11.007

17. Grell, G., Peckham, S., Schmitz, R., Mc Keen, S., Frost, G., Skamarock, W., Eder, B. (2005). Fully coupled “online” chemistry within the WRF model. Atmospheric Environment. Vol. 39. 6957–6975. https://doi.org/10.1016/j.atmosenv. 2005.04.027

18. Ivanov, S., Pavlova, H., Palamarchuk, J., Ruban, I. (2015). Marine aerosols impact on atmospheric characteristics over ocean surface in frontal zones. Geophysical Research Abstracts. Vol. 17. P. 1-12.

19. Ivanov, S., Simmer, C., Palamarchuk, J., Bachner, S. (2008). Estimation of the systematic error of precipitation and humidity in the MM5 model. Advances in Geosciences. Vol. 16. 97–107. https://doi.org/10.5194/adgeo-16-97-2008.

20. Jung, J., Souri, A. H., Wong, D.C., Lee, S., Jeon, W., Kim, J., Choi, Y. (2019). The impact of the direct effect of aerosols on meteorology and air quality using aerosol optical depth assimilation during the KORUS-AQ campaign. Journal of Geophysical Research: Atmospheres. Vol. 124(14). 8303–8319. https://doi.org/10.1029/2019JD030641

21. Kang, J.-Y., Bae, S.Y., Park, R.-S., Han, J.-Y. (2019). Aerosol Indirect Effects on the Predicted Precipitation in a Global Weather Forecasting Model. Atmosphere. Vol. 10. 392. https://doi.org/10.3390/atmos10070392

22. Kim, Y., Wu, Y., Seigneur, C., Roustan, Y. (2018). Multi-scale modeling of urban air pollution: development and application of a Street-in-Grid model (v1.0) by coupling MUNICH (v1.0) and Polair3D (v1.8.1). Geoscientific Model Development. Vol. 11. 611–629. https://doi.org/10.5194/gmd-11-611-2018

23. Kovalets, I.V., Talerko, M., Synkevych, R., Koval, S. (2022). Estimation of Cs-137 emissions during wildfires and dust storm in Chernobyl Exclusion Zone in April 2020 using ensemble iterative source inversion method. Atmospheric Environment. Vol. 288. 119305. https://doi.org/10.1016/j.atmosenv.2022.119305

24. Lappalainen, H. K., Kerminen, V.-M., Petäjä, T., et al. (2016). Pan-Eurasian Experiment (PEEX): towards a holistic understanding of the feedbacks and interactions in the land–atmosphere–ocean–society continuum in the northern Eurasian region. Atmospheric Chemistry and Physics. Vol.16. 14421–14461. https://doi.org/10.5194/acp-16-14421-2016

25. Mahura, A., Baklanov, A., Petersen, C., Sattler, K., Amstrup, B., Nielsen, N.W. (2006). ISBA Scheme Performance in High Resolution Modelling for Low Winds Conditions. HIRLAM Newsletter. Vol. 49. 22–35

26. Miatselskaya N., Kabashnikov V., Milinevsky G., Chaikovsky A., Danylevsky V., Bovchaliuk V. (2016). Atmospheric aerosol distribution in the Belarus-Ukraine region by the GEOS–Chem model and AERONET measurements. International Journal of Remote Sensing. Vol. 37:14. 3181-3195. http://dx.doi.org/10.1080/01431161.2016.1194541

27. Nguyen, G. T., Shimadera, H., Sekiguchi, A., Matsuo, T., Kondo, A. (2019). Investigation of aerosol direct effects on meteorology and air quality in East Asia by using an online coupled modeling system. Atmospheric Environment. Vol. 207. 182-196. https://doi.org/10.1016/j.atmosenv.2019.03.017

28. O'Connor, F. M., Johnson, C. E., Morgenstern, O., AbrahamN. L., Braesicke P., Dalvi M., Folberth G. A., Sanderson M. G., Telford P. J., Voulgarakis A., Young P. J., Zeng G., Collins W. J., Pyle J. A. (2014). Evaluation of the new UKCA climate-composition model – Part 2: The Troposphere Geoscientific Model Development. Vol. 7. 41–91. https://doi.org/10.5194/gmd-7-41-2014

29. Palamarchuk I., Ivanov S., Ruban I., Pavlova H. (2016). Influence of aerosols on atmospheric variables in the HARMONIE model. Atmospheric Research. Vol. 169. 539-546. https://doi.org/10.1016/j.atmosres.2015.08.001

30. Sass, B.H. (2002). A research version of the STRACO cloud scheme. Technical Report 02-10. Danish Meteorological Institute, Copenhagen.

31. Savage, N. H., Agnew, P., Davis, L. S., Ordóñez, C., Thorpe, R., Johnson, C. E., O'Connor, F. M., Dalvi, M. (2013). Air quality modelling using the Met Office Unified Model (AQUM OS24-26): model description and initial evaluation. Geoscientific Model Development. Vol. 6. 353–372. https://doi.org/10.5194/gmd-6-353-2013

32. Savenets, M., Pysarenko, L., Krakovska, S., Mahura, A. (2022). Integrated modelling for assessment the influence of aerosol feedbacks on a regional scale as a result of accidental wildfires and land cover changes in Ukraine. EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022. EGU22-4792. https://doi.org/10.5194/egusphere-egu22-4792

33. Savijärvi, H. (1990). Fast Radiation Parameterization Schemes for Mesoscale and Short-Range Forecast Models. Journal of Applied Meteorology. Vol. 29. 437–447.https://doi.org/10.1175/1520-0450(1990)029%3C0437:FRPSFM%3E2.0.CO;2

34. Turos, O.I., Petrosian, A.A., Maremukha, T.P., Morhulova V.V. (2018). Advantages of the use of risk assessment for the health of the population at the substantiation of the sizes of sanitary-and-protective zones for thermal power objects. Environment & Health. 3(88). 45-49. https://doi.org/10.32402/dovkil2018.03.045

35. Vignati, E., Wilson, J., Stier, P. (2004). M7: An efficient size-resolved aerosol microphysics module for large-scale aerosol transport models. Journal of Geophysical Reaearch. Vol. 109(D22). D22202. https://doi.org/10.1029/2003JD004485

36. Vogel, B., Vogel, H., Bäumer, D., Bangert, M., Lundgren, K., Rinke, R., Stanelle, T. (2009). The comprehensive model system COSMO-ART—Radiative impact of aerosol on the state of the atmosphere on the regional scale. Atmospheric Chemistry and Physics. Vol. 9. 8661–8680. https://doi.org/10.5194/acp-9-8661-2009

37. Zaveri, R.A., Peters, L.K. (1999). A new lumped structure photochemical mechanism for large-scale applications. Journal of Geophysical Research. Vol. 104 (D23). 30387-30415. https://doi.org/10.1029/1999JD900876

38. Zhang Y. (2008). Online-coupled meteorology and chemistry models: history, current status, and outlook. Atmospheric Chemistry and Physics. Vol. 8. 2895-2932. https://doi.org/10.5194/acp-8-2895-2008

About ׀ Editorial board ׀ Ethics ׀ For authors ׀ For reviewers ׀ Archive ׀ Contacts