Terrestrial water storage changes in the Bug river transboundary catchment observed by GRACE and water balance analysis
Polish Geological Institute — National Research Institute, Rakowiecka 4, PL00975, Warsaw, Poland
https://orcid.org/0000-0001-8949-4075
Justyna Śliwińska-Bronowicz
Space Research Centre of the Polish Academy of Sciences, Bartycka 18a, PL00716, Warsaw, Poland
https://orcid.org/0000-0001-7502-5243
Rafał Janica
Polish Geological Institute — National Research Institute, Rakowiecka 4, PL00975, Warsaw, Poland
https://orcid.org/0009-0001-7142-5570
Agnieszka Brzezińska
Polish Geological Institute — National Research Institute, Rakowiecka 4, PL00975, Warsaw, Poland
https://orcid.org/0009-0006-2007-9053
Abstract
References
1. Becker, M., Meyssignac, B., Xavier, L., Cazenave, A., Alkama, R., and B. Decharme, (2011). Past terrestrial water storage (1980–2008) in the Amazon Basin reconstructed from GRACE and in situ river gauging data, Hydrol. Earth Syst. Sci., 15, 533–546, https://doi.org/10.5194/hess-15-533-2011.
2. Box, G.E.P., Jenkins, G.M., Reinsel, G.C., Ljung, G.M. (2016). Time Series Analysis: Forecasting and Control, 5th ed., John Wiley and Sons Inc.: Hoboken, NJ, USA, 2016, ISBN 978-1-118-67502-1.
3. Chen, J., Cazenave, A., Dahle, C., Lovel, W., Panet, I., Pfeffer, J., and Moreira, L. (2022). Applications and Challenges of GRACE and GRACE Follow-On Satellite Gravimetry, Surv Geophys., 43(1), 305-345, https://doi.org/10.1007/s10712-021-09685-x.
4. Cornes, R.C., van der Schrier, G., van den Besselaar, E. J. M., & Jones, P.D. (2018). An ensemble version of the E-OBS temperature and precipitation data sets. J. of Geophys. Research: Atmospheres, 123, 9391–9409, https://doi.org/10.1029/2017JD028200.
5. Forootan, E., Schumacher, M., Mehrnegar, N., Bezděk, A., Talpe, M.J., Farzaneh, S., Zhang, C., Zhang, Y., Shum, C.K. (2020). An Iterative ICA-Based Reconstruction Method to Produce Consistent Time-Variable Total Water Storage Fields Using GRACE and Swarm Satellite Data. Remote Sensing. 2020; 12(10):1639. https://doi.org/10.3390/rs12101639.
6. Frappart, F., Seoane, L., and Ramillien, G. (2013). Validation of GRACE-derived terrestrial water storage from a regional approach over South America, Remote Sens. of Environ., 137, 69-83, https://doi.org/10.1016/j.rse.2013.06.008.
7. Frappart, F., Ramillien, G., 2018. Monitoring Groundwater Storage Changes Using the Gravity Recovery and Climate Experiment (GRACE) Satellite Mission: A Review. Remote Sens. 10(6), 829. https://doi.org/10.3390/rs10060829.
8. Getirana, A., Dutra, E., Guimberteau, M., Kam, J., Li, H., Decharme, B. and Sheffield, J. (2014). Water balance in the Amazon basin from a land surface model ensemble. J. of Hydrometeorol., 15, 2586–2614, https://doi.org/10.1175/JHM-D-14-0068.1.
9. Gyawali, B., Ahmed, M., Murgulet, D., Wiese, D. N. (2022). Filling Temporal Gaps within and between GRACE and GRACE-FO Terrestrial Water Storage Records: An Innovative Approach. Remote Sensing, 14(7):1565. https://doi.org/10.3390/rs14071565.
10. IMGW (2021). Climate of Poland 2020. Available online: https://www.imgw.pl/sites/default/files/2021-04/imgw-pib-klimat-polski-2020-opracowanie-final -eng-pojedyncze-min.pdf (accessed 2024-11-03).
11. Hassan, A., and Jin, S. (2016). Water storage changes and balances in Africa observed by GRACE and hydrologic models, Geodesy and Geodynamics, Volume 7, Issue 1, 39-49, https://doi.org/10.1016/j.geog.2016.03.002.
12. Haylock, M.R., Hofstra, N., Klein Tank, A.M.G., Klok, E.J., Jones, P.D. and New, M. (2008). A European daily high-resolution gridded data set of surface temperature and precipitation for 1950–2006. Journal of Geophysical Research, 114, D20119. https://doi.org/10.1029/2009JD011799
13. Jing, W., Zhang, P., Zhao, X. (2019). A comparison of different GRACE solutions in terrestrial water storage trend estimation over Tibetan Plateau. Sci Rep 9, 1765. https://doi.org/10.1038/s41598-018-38337-1.
14. Klok, E.J. and Klein Tank, A.M.G. (2008). Updated and extended European dataset of daily climate observations. International Journal of Climatology, 29, 1182–1191. https://doi.org/10.1002/joc.1779.
15. Kostrzewski, A., & Abramowicz, D., (2023). Kompleksowe badania środowiska geograficznego, Geoprzestrzeń, no. 7, Bogucki Wydawnictwo Naukowe, ISBN 978-83-7986-456-0, 136 p. [in polish].
16. Kundzewicz, Z. W., Piniewski, M., Mezghani, A., Okruszko, T., Pinskwar, I., Kardel, I., Øystein, H., Szczęsniak, M., Szwed, M., Benestad, R., Marcinkowski, P., Graczyk, D., Dobler, A., Førland, E. J., O’Keefe, J., Chorynski, A., Parding, K.M., Haugen, J.E., 2018. Assessment of climate change and associated impact on selected sectors in Poland. Acta Geophys 66, 1509–1523. https://doi.org/10.1007/s11600-018-0220-4.
17. Li, C., Yu, Q., Zhang, Y., Ma, N., Tian, J., & Zhang, X (2023). Dominant drivers for terrestrial water storage changes are different in northern and southern China. J. of Geophysical Research: Atmospheres, 128, e2022JD038074, https://doi.org/10.1029/2022JD038074.
18. Long, D., Yang, Y., Wada, Y., Hong, Y., Liang, W., Chen, Y., Yong, B., Hou, A., Wei, J., Chen, L. (2015). Deriving scaling factors using a global hydrological model to restore GRACE total water storage changes for China's Yangtze River Basin, Remote Sens. of Environ., 168, 177-193, https://doi.org/10.1016/j.rse.2015.07.003.
19. Loomis, B.D., S.B. Luthcke, and T.J. Sabaka (2019). Regularization and error characterization of GRACE mascons, J. Geod., 93,1381–1398, https://doi.org/10.1007/s00190-019-01252-y.
20. Merz, B., Elmer, F., Kunz, M., Mühr, B., Schröter, K., & Uhlemann-Elmer, S. (2014). The extreme flood in June 2013 in Germany. La Houille Blanche, 100(1), 5–10. https://doi.org/10.1051/lhb/2014001
21. Miro, M.E.; Famiglietti, J.S. (2018). Downscaling GRACE Remote Sensing Datasets to High-Resolution Groundwater Storage Change Maps of California’s Central Valley. Remote Sens., 10, 143, https://doi.org/10.3390/rs10010143.
22. Nanteza, J., C. R. de Linage, B. F. Thomas, and J.S. Famiglietti (2016). Monitoring groundwater storage changes in complex basement aquifers: An evaluation of the GRACE satellites over East Africa, Water Resour. Res., 52, 9542–9564, doi:10.1002/2016WR018846.
23. Pascal, C., Ferrant, S., Selles, A., Maréchal, J.-C., Paswan, A., and Merlin, O. (2022). Evaluating downscaling methods of GRACE (Gravity Recovery and Climate Experiment) data: a case study over a fractured crystalline aquifer in southern India, Hydrol. Earth Syst. Sci., 26, 4169–4186, https://doi.org/10.5194/hess-26-4169-2022.
24. Preisendorfer, R.W., (1988). Principal Component Analysis in Meteorology and Oceanography. Elsevier, 425 p.
25. Rakovec, O., Samaniego, L., Hari, V., Markonis, Y., Moravec, V., Thober, S., et al. (2022). The 2018–2020 multi-year drought sets a new benchmark in Europe. Earth's Future, 10, e2021EF002394. https://doi.org/10.1029/2021EF002394.
26. Ran, J., Ditmar, P., Klees, R., 2018. Optimal mascon geometry in estimating mass anomalies within Greenland from GRACE. Geophys J Int 214(3), 2133–2150. https://doi.org/10.1093/gji/ggy242.
27. Rodell, M., J.S. Famiglietti, J. Chen, S.I. Seneviratne, P. Viterbo, S. Holl, and C.R. Wilson, (2004). Basin scale estimates of evapotranspiration using GRACE and other observations, Geophys. Res. Lett., 31, L20504, https://doi.org/10.1029/2004GL020873.
28. Rowlands, D.D., Luthcke, S.B., Klosko, S.M., Lemoine, F.G.R., Chinn, D.S., McCarthy, J.J., Cox, C.M., and Anderson, O.B. (2005). Resolving mass flux at high spatial and temporal resolution using GRACE intersatellite measurements, Geophys. Res. Lett., 32, L04310.
29. Sahoo, A., Pan, M., Troy, T.J., Vinukollu, R.K., Sheffield, J., E.F. Wood, (2011). Reconciling the global terrestrial water budget using satellite remote sensing, Remote Sens. of Environ., 115, Issue 8, 1850-1865, https://doi.org/10.1016/j.rse.2011.03.009.
30. Save, H. (2020). CSR GRACE and GRACE-FO RL06 Mascon Solutions v02, https://doi.org/10.15781/cgq9-nh24.
31. Save, H., Bettadpur, S., Tapley, B. D. (2016). High resolution CSR GRACE RL05 mascons, J. Geophys. Res. Solid Earth, 121. https://doi.org/10.1002/2016JB013007.
32. Savoca, M. E., Senay, G. B., Maupin, M. A., Kenny, J., F. Perry. C., A. (2013). Actual evapotranspiration modeling using the operational Simplified Surface Energy Balance (SSEBop) approach. Scientific Investigations Report 2013-5126. Groundwater Resources Program. U.S. Geological Survey https://doi.org/10.3133/sir20135126.
33. Scanlon, B. R., Zhang, Z., Save, H., Wiese, D. N., Landerer, F. W., Long, D., Longuevergne, L., Chen, J. (2016). Global evaluation of new GRACE mascon products for hydrologic applications. Water Resour Res 52(12), 9412–9429. https://doi.org/10.1002/2016WR019494.
34. Senay, G.B. (2018). Satellite psychrometric formulation of the Operational Simplified Surface Energy Balance (SSEBop) model for quantifying and mapping evapotranspiration. Applied engineering in agriculture, 34(3), 555-566. https://doi.org/10.13031/aea.12614.
35. Snizhko, S., Didovets, I., Shevchenko, O., Yatsiuk, M., Hattermann, F. F., Bronstert, A. (2024). Southern Bug River: water security and climate changes perspectives for post-war city of Mykolaiv, Ukraine. Frontiers in Water, 6:1447378, https://doi.org/10.3389/frwa.2024.1447378
36. Somorowska, U., (2021). Czasowa zmienność i przestrzenne zróżnicowanie ewapotranspiracji w zlewni nizinnej rzeki Łasicy, Prace i Studia Geograficzne, 66.3, 35–46, https://doi.org/10.48128/pisg/2021-66.3-03.
37. Solovey, T., Śliwińska-Bronowicz, J., Janica, R., Brzezińska, A., (2024). High-resolution groundwater storage changes from GRACE/GRACE-FO using assimilation models and hydrogeological observations, https://www.globalwaterstorage.info.
38. Sun, A. Y., Scanlon, B. R., Zhang, Z., Walling, D., Bhanja, S. N., Mukherjee, A., & Zhong, Z. (2019). Combining physically based modeling and deep learning for fusing GRACE satellite data: Can we learn from mismatch? Water Resour. Res., 55, 1179–1195, https://doi.org/10.1029/2018WR023333.
39. Tapley, B.D., Watkins, M.M., Flechtner, F. et al. (2019). Contributions of GRACE to understanding climate change. Nat. Clim. Chang., 9, 358–369, https://doi.org/10.1038/s41558-019-0456-2.
40. Tapley, B. D., Bettadpur, S., Watkins, M., Reigber, C., 2004: The gravity recovery and climate experiment: Mission overview and early results. Geophys. Res. Lett. 31(9), L09607. https://doi.org/10.1029/2004GL019920.
41. Urban, G., L. Kuchar, M. Kempińska-Kasprzak, and E. Łaszyca, (2022). A Climatic water balance variability during the growing season in Poland in the context of modern climate change, Meteorol. Z., Vol. 31, No. 5, 349–365. https://doi.org/10.1127/metz/2022/1128.
42. van Dijk, A. I. J. M., Renzullo, L. J., Wada, Y., and Tregoning, P. (2014). A global water cycle reanalysis (2003–2012) merging satellite gravimetry and altimetry observations with a hydrological multi-model ensemble, Hydrol. Earth Syst. Sci., 18, 2955–2973, https://doi.org/10.5194/hess-18-2955-2014.
43. Velicogna, I., Mohajerani, Y., A, G., Landerer, F., Mouginot, J., Noel, B., et al. (2020). Continuity of ice sheet mass loss in Greenland and Antarctica from the GRACE and GRACE Follow-On missions. Geophysical Research Letters, 47, e2020GL087291. https://doi.org/10.1029/2020GL087291.
44. Vishwakarma, B.D., B. Devaraju, N. Sneeuw, (2018). What Is the Spatial Resolution of GRACE Satellite Products for Hydrology? Remote Sens., 10, 852, https://doi.org/10.3390/rs10060852.
45. Vishwakarma, B.D., Zhang, J. & Sneeuw, N. (2021). Downscaling GRACE total water storage change using partial least squares regression. Sci Data, 8, 95, https://doi.org/10.1038/s41597-021-00862-6.
46. Watkins, M.M., D.N. Wiese, D.N. Yuan, C. Boening, and F.W. Landerer (2015). Improved methods for observing Earth’s time variable mass distribution with GRACE using spherical cap mascons, J. Geophys. Res. Solid Earth, 120, 2648–2671. https://doi.org/10.1002/2014JB011547.
47. Wypych, A., Sulikowska, A., Ustrnul, Z., Czekierda, D., 2017. Temporal Variability of Summer Temperature Extremes in Poland. Atmosphere 8(3), 51. https://doi.org/10.3390/atmos8030051.
48. Yin, W., G. Zhang, F. Liu, D. Zhang, X. Zhang, and S. Chen, (2022). Improving the spatial resolution of GRACE-based groundwater storage estimates using a machine learning algorithm and hydrological model, Hydrogeol. J., 30, 947–963. https://doi.org/10.1007/s10040-021-02447-4.
49. Zhang, T., Bian, S., Ji, B., Li, W., Zong, J., & Yuan, J. (2024). The Extraction of Terrestrial Water Storage Anomaly from GRACE in the Region with Medium Scale and Adjacent Weak Signal Area: A Case for the Dnieper River Basin. Remote Sens., 16(12), 2124. https://doi.org/10.3390/rs16122124.
50. Zhong, D., Wang, S., & Li, J. (2021). A self-calibration variance-component model for spatial downscaling of GRACE observations using land surface model outputs. Water Resour. Res., 57, e2020WR028944, https://doi.org/10.1029/2020WR028944.