Regarding the data inconsistency from different data sources on emissions and ground-level pollutants’ concentrations in the atmospheric air over Ukraine
Ukrainian Hydrometeorological Institute of the State Emergency Service of Ukraine and the National Academy of Sciences of Ukraine, Kyiv, Ukraine
https://orcid.org/0000-0001-9429-6209
Liudmyla Nadtochii
Ukrainian Hydrometeorological Institute of the State Emergency Service of Ukraine and the National Academy of Sciences of Ukraine, Kyiv, Ukraine
https://orcid.org/0000-0003-3038-5960
Tetiana Kozlenko
Ukrainian Hydrometeorological Institute of the State Emergency Service of Ukraine and the National Academy of Sciences of Ukraine, Kyiv, Ukraine
https://orcid.org/
Kateryna Komisar
Ukrainian Hydrometeorological Institute of the State Emergency Service of Ukraine and the National Academy of Sciences of Ukraine, Kyiv, Ukraine
https://orcid.org/
Antonina Umanets
Ukrainian Hydrometeorological Institute of the State Emergency Service of Ukraine and the National Academy of Sciences of Ukraine, Kyiv, Ukraine
https://orcid.org/0009-0008-4867-4430
Natalia Zhemera
Ukrainian Hydrometeorological Institute of the State Emergency Service of Ukraine and the National Academy of Sciences of Ukraine, Kyiv, Ukraine
https://orcid.org/
Abstract
References
1. Babak, V., Zaporozhets, A., Isaienko, V., & Babikova, K. (2020). Analysis of the Air Pollution Monitoring System in Ukraine. Systems, Decision and Control in Energy I. Studies in Systems, Decision and Control, 298. Springer, Cham. https://doi.org/10.1007/978-3-030-48583-2_6
2. Bashtannik, M.P., Zhemera, N.S., Kiptenko, E.M., & Kozlenko, T.V. (2014). Stan zabrudnennia atmosfernogo povitria nad terytorieyu Ukrainy [The state of atmospheric air pollution over Ukraine]. Naukovi pratsi UkrNDGMI, 266, 70-93
3. Brasseur, G.P. (1997). Formulation of a Chemical Transport Model. In: Brasseur, G.P. (eds) The Stratosphere and Its Role in the Climate System. Nato ASI Series, vol 54. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-03327-2_18
4. Chastko K, & Adams M. (2019). Improving long-term air pollution estimates with incomplete data: A method-fusion approach. MethodsX, 6:1489-1495. https://doi.org/10.1016/j.mex.2019.06.005
5. Chugai, A.V., & Safranov, T.A. (2020). Features of air pollution the cities of the North-Western Black Sea region. Visnyk of V. N. Karazin Kharkiv National University, Series Geology. Geography. Ecology, 52, 251-260. https://doi.org/10.26565/2410-7360-2020-52-18
6. Galán-Madruga D. (2021) A methodological framework for improving air quality monitoring network layout. Applications to environment management. J Environ Sci (China), 102:138-147. https://doi.org/10.1016/j.jes.2020.09.009
7. Granier, C., Bessagnet, B., Bond, T., D’Angiola, A., Denier van der Gon, H., Frost. G.J., Heil, A., Kaiser, J.W., Kinne, S., Klimont, Z., Kloster, S., Lamarque, J.-F., Liousse, C., Masui, T., Meleux, F., Mieville, A., Ohara, T., Raut, J.-C., Riahi, K., Schultz, M.G., Smith, S.J., Thompson, A., van Aardenne, J., van der Werf, G.R. & van Vuuren, D.P. (2011) Evolution of anthropogenic and biomass burning emissions of air pollutants at global and regional scales during the 1980–2010 period. Climatic Change, 109, 163. https://doi.org/10.1007/s10584-011-0154-1
8. Inness, A., Ades, M., Agustí-Panareda, A., Barré, J., Benedictow, A., Blechschmidt, A.-M., Dominguez, J. J., Engelen, R., Eskes, H., Flemming, J., Huijnen, V., Jones, L., Kipling, Z., Massart, S., Parrington, M., Peuch, V.-H., Razinger, M., Remy, S., Schulz, M., & Suttie, M. (2019). The CAMS reanalysis of atmospheric composition, Atmos. Chem. Phys., 19, 3515–3556, https://doi.org/10.5194/acp-19-3515-2019
9. Krupnick, A.J. (2008). Challenges to managing air pollution. J Toxicol Environ Health A., 71(1):13-23. https://doi.org/10.1080/15287390701557404
10. Malik, A., Aggarwal, S.G., Sinha, P.R., Kondo, Y., & Ohata, S. (2024). On the biases of MERRA-2 reanalysis and ground-based measurements of black carbon aerosols over India. Atmospheric Pollution Research in press, 102325. https://doi.org/10.1016/j.apr.2024.102325
11. Malytska, L., Ladstätter-Weißenmayer, A., Galytska, E., & Burrows, J.P. (2024) Assessment of environmental consequences of hostilities: Tropospheric NO2 vertical column amounts in the atmosphere over Ukraine in 2019–2022. Atmospheric Environment, 318, 120281. https://doi.org/10.1016/j.atmosenv.2023.120281
12. Manisalidis, I., Stavropoulou, E., Stavropoulos, A., & Bezirtzoglou, E. (2020). Environmental and Health Impacts of Air Pollution: A Review. Front. Public Health, 8:14. https://doi.org/10.3389/fpubh.2020.00014
13. Melnychenko, S. G., Bohadorova, L. M., & Okhremenko, I. V. (2023). Pollutants emissions dynamics by stationary and mobile sources of pollution within Ukraine. Man and Environment. Issues of Neoecology, (40), 42-52. https://doi.org/10.26565/1992-4224-2023-40-04
14. Puiu, S., Udriștioiu, M.T. & Velea, L. (2022) Air Pollution Management: A Multivariate Analysis of Citizens' Perspectives and Their Willingness to Use Greener Forms of Transportation. Int J Environ Res Public Health., 19(21):14613. https://doi.org/10.3390/ijerph192114613
15. Qiu, M., Zigler, C., & Selin, N. E. (2022). Statistical and machine learning methods for evaluating trends in air quality under changing meteorological conditions. Atmos. Chem. Phys., 22, 10551–10566, https://doi.org/10.5194/acp-22-10551-2022
16. Rentschler, J. & Leonova, N. (2023). Global air pollution exposure and poverty. Nat Commun, 14, 4432. https://doi.org/10.1038/s41467-023-39797-4
17. Ryu, Y-H. & Min, S-K. (2021). Long-term evaluation of atmospheric composition reanalyses from CAMS, TCR-2, and MERRA-2 over South Korea: Insights into applications, implications, and limitations. Atmospheric Environment, 246, 118062. https://doi.org/10.1016/j.atmosenv.2020.118062
18. Savenets M., Dvoretska I., Nadtochii L., & Zhemera N. (2022). Comparison of TROPOMI NO2, CO, HCHO, and SO2 data against ground-level measurements in close proximity to large anthropogenic emission sources in the example of Ukraine. Meteorological Applications, 29(6), e2108. https://doi.org/10.1002/met.2108
19. Shaddick, G., Thomas, M.L., Mudu, P., Ruggeri, G., & Gumy, S. (2020). Half the world’s population are exposed to increasing air pollution. npj Clim Atmos Sci, 3, 23. https://doi.org/10.1038/s41612-020-0124-2
20. Shahgedanova, M., & Burt, T.P. (1994). New data on air pollution in the former Soviet Union. Global Environmental Change, 4(3), 201-227. https://doi.org/10.1016/0959-3780(94)90003-5
21. Smith, W.H. (1992). Air Pollution Effects on Ecosystem Processes. In: Barker, J.R., Tingey, D.T. (eds) Air Pollution Effects on Biodiversity. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3538-6_11
22. Sofiev, M., Ermakova, T., & Vankevich, R. (2012) Evaluation of the smoke-injection height from wild-land fires using remote-sensing data, Atmos. Chem. Phys., 12, 1995–2006, https://doi.org/10.5194/acp-12-1995-2012
23. Vedrenne, M., Borge, R., Lumbreras, J., Conlan, B., Rodríguez, M.E., de Andrés J. M., de la Paz, D., Pérez, J., & Narros, A. (2015) An integrated assessment of two decades of air pollution policy making in Spain: Impacts, costs and improvements. Science of The Total Environment, 527–528, 351-361, https://doi.org/10.1016/j.scitotenv.2015.05.014
24. Vilcins, D., Christofferson, R.C., Yoon, J.H., Nazli, S.N., Sly, P.D., Cormier, S.A., & Shen, G. (2024). Updates in Air Pollution: Current Research and Future Challenges. Ann Glob Health., 90(1):9. https://doi.org/10.5334/aogh.4363
25. Yatsenko Y., Shevchenko O., & Snizhko S. (2018). Assessment of air pollution level of nitrogen dioxide and trends of it changes in the cities of Ukraine. Visnyk of Taras Shevchenko National University of Kyiv: Geology, 3(82), 87-95. http://doi.org/10.17721/1728-2713.82.11