Features of the hydrochemical regime of anthropogenically altered surface water bodies
Institute of Hydrobiology, National Academy of Sciences of Ukraine
https://orcid.org/0000-0002-1128-5270
Tetyana Zhezherya
Ukrainian Hydrometeorological Institute of the State Emergency Service of Ukraine and National Academy of Sciences of Ukraine
https://orcid.org/0009-0007-2394-7271
Petro Linnik
Institute of Hydrobiology, National Academy of Sciences of Ukraine
https://orcid.org/0000-0002-2144-4052
Valentyna Osipenko
Institute of Hydrobiology, National Academy of Sciences of Ukraine
https://orcid.org/0009-0006-3100-4655
Abstract
References
1. Carpenter, S.R., Caraco, N.F., Correll, D.L. et al. (1998). Nonpoint pollution of surface waters with phosphorus and nitrogen. Ecological Applications, 8 (3), 559–568. https://doi.org/10.1890/1051-0761(1998)008[0559:NPOSWW]2.0.CO;2
2. Debeiko, E.V., Ryabov, A.K., Nabivanets, B.I. (1973). Direct photometric determination of soluble proteins in natural waters. Hydrobiol. J., 9 (6), 109–113. [in Russian]
3. Denisova, A.I., Nakhshina, E.P., Novikov, B.I., Ryabov, A.K. (1987). Bottom sediments of reservoirs and their influence on water quality. Kyiv: Naukova Dumka. [in Russian]
4. Denisova, A.I., Timchenko, V.M., Nakhshina, E.P. et al. (1989) Hydrology and hydrochemistry of the Dnieper and its reservoirs. Kyiv: Naukova Dumka. [in Russian]
5. Development of a management plan for the Dnieper River Basin District in Ukraine: Phase 1, Step 1 – Description of the characteristics of the river basin district. European Union Water Initiative Plus for the Eastern Partnership Countries (EUWI+ East). 19.02.2019. (p. 138). [in Ukrainian]
6. Heathwaite, A.L., Johnes, P.J., Peters, N.E. (1996). Trends in nutrients. Hydrological Processes, 10, 263–293. https://doi.org/10.1002/(SICI)1099-1085(199602)10:2<263::AID-HYP441>3.0.CO;2-K
7. Kowalczewska-Madura, K., Dondajewska, R., Gołdyn, R., Kozak, A., Messyasz, B. (2018). Internal phosphorus loading from the bottom sediments of a dimictic lake during its sustainable restoration. Water Air Soil Pollut., 229. Article number 280, 18 p.
8. Linnik, P.M., Iskra, I.V. (1994). Application of anodic stripping voltammetry to the investigation of the physicochemical state of cadmium in surface water in the Ukraine. Microchem. J., 50 (2), 184–190.
9. Linnik, P.M., Morozova, A.O. (2006). Desorption of nitrogen, phosphorus and iron compounds from bottom sediments under the action of various factors. Hydrology, Hydrochemistry and Hydroecology, 10, 73–81. [in Ukrainian]
10. Linnik, P.M., Zhezherya, V.A. (2022). Peculiarities of the dynamics of some elements of hydrochemical regime in small water bodies of urban territories: oxygen regime and dissolved solids content. Hydrobiol. J., 58 (4), 91–107. DOI: 10.1615/HydrobJ.v58.i4.70
11. Linnik, P.N. (2003).Complexation as the most important factor in the fate and transport of heavy metals in the Dnieper water bodies. Anal. Bioanal. Chem., 376 (3), 405–412. DOI: 10.1007/s00216-003-1882-5
12. Linnik, P.N., Ivanechko, Ya.S., Linnik, R.P., Zhezherya, V.A. (2013). Humus substances of surface waters and the peculiarities of their distribution among various fractions. Hydrobiol. J., 49 (5), 90–111. DOI: 10.1615/HydrobJ.v49.i5.100
13. Linnik, P.N., Leshchinskaya, A.A., Nabivanets, B.I. (1989). Methodology for investigating coexisting forms of chromium in natural waters. Hydrobiol. J., 25 (2), 91–96.
14. Linnik, P.N., Nabivanets, Yu.B. (1988). Application of anodic inversion voltammetry for the determination of free and complexed zinc and lead ions in natural waters. Hydrobiol. J., 24 (1), 68–71. [in Russian]
15. Linnik, P.N., Zhezherya, V.A., Linnik, R.P. (2018). Lability of metals in surface waters as the main characteristics of their potential bioavailability (a review). Hydrobiol. J., 54 (6), 3–26. DOI: 10.1615/HydrobJ.v54.i6.10
16. Lowry, O.H., Rosebrough, N. J., Farr, G.A., Randall, R.I. (1951). Protein measurement with the Folin phenol reagents. Biol. Chem., 193 (1–2), 265–268.
17. Manual for chemical analysis of land surface waters (1977). Ed. by A.D. Semenov. Leningrad: Gidrometeoizdat. [in Russian]
18. Nabivanets, B.I., Linnik, P.N., Kalabina, L.V. (1981). Kinetic methods for the analysis of natural waters. Kiev: Naukova Dumka. [in Russian]
19. Nabivanets, B.Y., Osadchy, V.I., Osadcha, N.M., Nabivanets, Yu.B. (2007). Analytical chemistry of surface waters. Kyiv: Naukova Dumka. [in Ukrainian]
20. Nazari-Sharabian, M., Ahmad, S., Karakouzian, M. (2018). Climate change and eutrophication: a short review. Eng. Technol. Appl. Sci. Res., 8 (6), 3668–3672. https://doi.org/10.48084/etasr.2392
21. Osadchyy, V., Nabyvanets, B., Linnik, P., Osadcha, N., Nabyvanets, Yu. (2016). Processes determining surface water chemistry. Switzerland: Springer International Publishing. DOI 10.1007/978-3-319-42159-9
22. Rathorel, S.S., Chandravanshi, P., Chandravanshi, A., Jaiswal, K. (2016). Eutrophication: Impacts of excess nutrient inputs on aquatic ecosystem. Journal of Agriculture and Veterinary Science, 9 (3), 89–96. DOI: 10.9790/2380-0910018996
23. Rubini, P., Lakatos, A., Champmartin, D., Kiss, T. (2002). Speciation and structural aspects of interactions of Al(III) with small biomolecules. Coord. Chem. Reviews, 228, 137–152. https://doi.org/10.1016/S0010-8545(01)00467-2
24. Savransky, L.I., Nadzhafova, O.Yu. (1992). Spectrophotometric study of complexation of Cu, Fe and Al with chromazurol S in the presence of a mixture of cationic and nonionic surfactants. J. Analytical Chemistry, 47 (9), 1613–1617. [in Russian]
25. Sellers, B.H. & Markland, H.R. (1987). Decaying lakes: the origins and control of eutrophication., New York: John Wiley & Sons.
26. Trottet, A., George, C., Drillet, G., Lauro, F.M. (2022). Aquaculture in coastal urbanized areas: A comparative review of the challenges posed by Harmful Algal Blooms. Critical Rev. Environ. Sci. Technol., 52 (16), 2888–2929. https://doi.org/10.1080/10643389.2021.1897372
27. Vermonden, K., Leuven, R.S.E.W., van der Velde, G. et al. (2009). Urban drainage systems: an undervalued habitat for aquatic macroinvertebrates. Biol. Conserv., 142 (5), 1105–1115. https://doi.org/10.1016/j.biocon.2009.01.026
28. Vyshnevskyi, V.I., Zhezherya, V.A., Nezbrytska, I.M., Bilous, O.P. (2021). The impact of aeration on ecological state of lake Telbyn in Kyiv. Journ. Geol. Geograph. Geoecology, 30 (1), 179–189. DOI: 10.15421/112116
29. Wu, Y., Wen, Y., Zhou, J., Wu, Y. (2013). Phosphorus release from lake sediments: Effects of pH, temperature and dissolved oxygen. KSCE Journal of Civil Engineering, 18 (1), 323–329. https://doi.org/10.1007/s12205-014-0192-0
30. Zhezherya, T.P., Zhezherya, V.A., Linnik, P.M., Osipenko, V.P. (2025). Hydrochemical characteristics of small rivers and water bodies within the urbanized territory. Hydrobiol. J., 61 (1), 86–106. DOI: 10.1615/HydrobJ.v61.i1.80
31. Zhezherya, V.A., Linnik, P.N., Belous, Ye. P. (2019). Improvement in the hydrochemical regime of small urban water bodies under conditions of artificial aeration (on the example of Lake Telbin). Hydrobiol. J., 55 (4), 94–110. DOI: 10.1615/HydrobJ.v55.i4.90
32. Zhezherya, V.A., Zhezherya, T.P. (2021). Spatial and temporal changes in the concentration of nutrients in urban water body (on the example of lake Verbne, Kyiv). Hydrobiol. J., 57 (2), 96–107. DOI: 10.1615/HydrobJ.v57.i2.90
33. Zhezherya, V.A., Zhezherya, T.P., Linnik, P.M., Osipenko, V.P. (2023). Experimental simulation of the influence of temperature on the migration of substances from bottom sediments. Hydrobiol. J., 59 (6), 83–98. DOI: 10.1615/HydrobJ.v59.i6.70
34. Zhezherya, V.A., Zhezherya, T.P., Linnik, P.M., Osipenko, V.P., Yevtukh, T.V. (2022). Peculiarities of the dynamics of some elements of hydrochemical regime in small water bodies of urban territories: nutrients and organic matter. Hydrobiol. J., 58 (6), 81–103. DOI: 10.1615/HydrobJ.v58.i6.50