SPATIAL AND TEMPORAL TRENDS OF MAXIMUM SNOWMELT-RAINFALL RUNOFF IN THE RIVERS OF UKRAINIAN POLISSYA
Оdessa I.I. Mechnikov National University
https://orcid.org/0000-0003-0600-5657
Denys Sivaiev
Оdessa I.I. Mechnikov National University
https://orcid.org/0009-0000-3866-8274
Abstract
References
1. Bertola, M., Bl?schl, G., Boh??, M., Hall, J., Kiss, A., Kjeldsen, T. R., Kohnov?, S., Merz, B., Merz, R., M?ller, M., Ovcharuk, V., Parajka, J., & Viglione, A. (2023). Megafloods in Europe can be anticipated from observations in hydrologically similar catchments. Nature Geoscience, 16, 982–988. https://doi.org/10.1038/s41561-023-01300-5
2. Bl?schl, G., Hall, J., Parajka, J., Perdig?o, R. A. P., Merz, B., Arheimer, B., … ?ivkovi?, N. (2017). Changing climate shifts timing of European floods. Science, 357(6351), 588–590. https://doi.org/10.1126/science.aan2506
3. Bl?schl, G., Hall, J., Viglione, A., Perdig?o, R. A. P., Parajka, J., Merz, B., … ?ivkovi?, N. (2019). Changing climate both increases and decreases European river floods. Nature, 573(7772), 108–111. https://doi.org/10.1038/s41586-019-1495-6
4. Determination of Calculated Hydrological Characteristics according to SNiP 2.01.14-83. (1983). [in Russian]. https://online.budstandart.com/ua/catalog/doc-page.html?id_doc=4260
5. Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 establishing a framework for Community action in the field of water policy. (2000). Retrieved April 18, 2021, from https://zakon.rada.gov.ua/laws/show/994_962#Text
6. Gopchenko, Ye. D., & Ovcharuk, V. A. (2018). Current methodology for standardizing characteristics of maximum spring flood runoff of lowland rivers of Ukraine. Ukrainian Geographical Journal, (2), 26–33. https://doi.org/10.15407/ugz2018.02.026 [in Ukrainian]
7. Goptsiy, M.V., & Bondarenko, A. Ye. (2024). Interannual variability of flood runoff in the Teteriv River basin over a long-term period. Hydrology, Hydrochemistry and Hydroecology, 3(71), 32-42. https://doi.org/10.17721/2306-5680.2024.3.4">https://doi.org/10.17721/2306-5680.2024.3.4 [in Ukrainian]
8. Gorbachova, L. O. (2014). Methodological approaches to assessing the homogeneity and stationarity of hydrological observation series. Hydrology, Hydrochemistry and Hydroecology, 1(32), 22–31. [in Ukrainian]
9. Gorbachova, L. O. (2016). The place and role of hydro-genetic analysis among modern methods of studying river runoff. Scientific Works of the Ukrainian Research Hydrometeorological Institute, 268, 73–81. [in Ukrainian]
10. Gorbachova, L. O., & Barandich, S. L. (2016). Spatial-temporal variability of maximum spring flood runoff and mixed-origin floods of Ukrainian rivers. Scientific Works of the Ukrainian Research Hydrometeorological Institute, (269), 107–114. Retrieved from http://old.uhmi.org.ua [in Ukrainian]
11. Gorbachova, L., Zabolotnia, T., & Khrystyuk, B. (2018). Homogeneity and stationarity analysis of the snow-rain floods in the Danube basin within Ukraine. Acta Hydrologica Slovaca, 19(1), 35–41.
12. Gopchenko, E., Loboda, N., & Ovcharuk, V. (2014). Hydrological calculations: textbook. Odesa State Environmental University. http://eprints.library.odeku.edu.ua/id/eprint/6078 [in Ukrainian]
13. Gopchenko, E., Ovcharuk, V., & Shakirzanova, Zh. (2010). Calculations and long-term forecasts of the characteristics of spring flood maxima in the Prypiat River basin: monograph. Odesa: TES. [in Ukrainian]
14. Grebin, V. (2010a). Current changes in the formation conditions and characteristics of spring floods of rivers in Ukraine. Scientific Bulletin of Chernivtsi University: Geography, 483, 11–17. [in Ukrainian]
15. Grebin, V. (2010b). Modern water regime of the rivers of Ukraine (landscape-hydrological analysis). Kyiv: Nika-Center. [in Ukrainian]
16. Hilchevskyi, V., & Grebin, V. (2017). Hydrographic and water-management zoning of the territory of Ukraine approved in 2016 – Implementation of EU WFD provisions. Hydrology, Hydrochemistry and Hydroecology, 1(44), 8–20. [in Ukrainian]
17. Kemter, M., Merz, B., Marwan, N., Vorogushyn, S., & Bl?schl, G. (2020). Joint trends in flood magnitudes and spatial extents across Europe. Geophysical Research Letters, 47(7), e2020GL087464. https://doi.org/10.1029/2020GL087464
18. Knighton, J., Steinschneider, S., & Walter, M. T. (2017). A vulnerability-based, bottom-up assessment of future riverine flood risk using a modified peaks over threshold approach and a physically based hydrologic model. Water Resources Research, 53(12), 10043–10064. https://doi.org/10.1002/2017WR021036
19. Korniienko, V. O., Obodovskyi, O. H., & Luk’ianets, O. I. (2021). Assessment of long-term variability of mean annual water runoff of rivers in the Prypiat basin within Ukraine and its calculated characteristics in water phases. Hydrology, Hydrochemistry and Hydroecology, 3(61), 33–41. DOI: https://doi.org/10.17721/2306-5680.2024.3.4">https://doi.org/10.17721/2306-5680.2024.3.4 [in Ukrainian]
20. Krakovska, S. V., Shpytal, T. M., Chyhareva, A. Yu., Pysarenko, L. A., & Kryshtop, L. Yu. (2023). Climatic characteristics of thermal periods in Ukraine until the end of the 21st century. Part I: Warm period. Meteorology, hydrology, environmental monitoring, 2(4), 35–50. https://doi.org/10.15407/Meteorology2023.04.035 [in Ukrainian]
21. Loboda, N. S. (2005). Calculations and generalizations of annual river runoff characteristics of Ukraine under anthropogenic influence: monograph. Odesa: Ekologiia. [in Russian]
22. Loboda, N. (2010). Methods of statistical analysis in hydrological calculations and forecasts: textbook. Odesa: Ecology. [in Ukrainian]
23. Lobodzinskyi, O., Vasylenko, Y., Koshkina, O., & Nabyvanets, Yu. (2023). Assessing the impact of climate change on discharge in the Horyn River basin by analyzing precipitation and temperature data. Meteorology, Hydrology and Water Management, 11(1), 93–106. https://doi.org/10.26491/mhwm/163286
24. Lobodzynskyi, O., & Danko, K. (2023). Identification and assessment of changes in the types of river feeding in the Horyn River basin. Hydrology, Hydrochemistry and Hydroecology, 2(68), 32–42. https://doi.org/10.17721/2306-5680.2023.2.4 [in Ukrainian]
25. Merz, B., Aerts, J., Arnbjerg-Nielsen, K., Baldi, M., Becker, A., Bichet, A., … Ward, P. J. (2014). Floods and climate: Emerging perspectives for flood risk assessment and management. Natural Hazards and Earth System Sciences, 14(7), 1921–1942. https://doi.org/10.5194/nhess-14-1921-2014
26. Real Statistics Using Excel. Table of Critical Values of Pearson’s Correlation Coefficient [Електронний ресурс]. URL: https://real-statistics.com/statistics-tables/pearsons-correlation-table/
27. National Atlas of Ukraine. (1999–2000). Institute of Geography, National Academy of Sciences of Ukraine. URL: http://wdc.org.ua/atlas/4070100.html [in Ukrainian]
28. Scientific and methodological basis for establishing design characteristics of spring floods in the Dnipro River basin under climate variability: Research report (final). (2019). (E. D. Hopchenko, Scientific supervisor). Odesa State Environmental University. State registration No. 0117U002424. Odesa. [in Ukrainian].
29. Ovcharuk, V. (2020). Maximum runoff of spring floods of lowland rivers of Ukraine: monograph. Odesa: TES. http://eprints.library.odeku.edu.ua/id/eprint/9662 [in Ukrainian]
30. Ovcharuk, V., & Shakirzanova, Zh. (Eds.) (2024). Extreme hydrological phenomena on the rivers of Southern Ukraine: Calculations and forecasts. Odesa: Odesa State Environmental University. http://eprints.library.odeku.edu.ua/id/eprint/13144 [in Ukrainian]
31. Pekarova, P., Gorbachova, L., Bacov? Mitkova, V., et al. (2019). Statistical analysis of hydrological regime of the Danube River at Ceatal Izmail Station. IOP Conf. Series: Earth and Environmental Science, 221, 012035. https://doi.org/10.1088/1755-1315/221/1/012035
32. Rippl, W. (1883). The capacity of storage reservoirs for water supply. Proceedings of the Institute of Civil Engineers, 71, 270–278.
33. Sivaiev, D., & Shakirzanova, Zh. (2024). The impact of climate change on maximum runoff of rivers in the Ukrainian Polissia. In Conference “On Guard of Climate Action” dedicated to World Meteorological Day (pp. 73–75). Kyiv. https://doi.org/10.15407/conf_UHMI_CGO_2024.024 [in Ukrainian]
34. Snizhko, S., Bertola, M., Ovcharuk, V., Shevchenko, O., Didovets, I., & Bl?schl, G. (2023). Climate impact on flood changes – An Austrian-Ukrainian comparison. Journal of Hydrology and Hydromechanics, 71(3), 271–282. https://doi.org/10.2478/johh-2023-0017
35. State Building Norms (DBN) V.2.4-8:2014. (2013). Determination of calculated hydrological characteristics. State Research Institute of Building Structures. Kyiv: Ministry of Regional Development of Ukraine. [in Ukrainian]
36. Osypov, V., Filippov, N., Mossur, H., Ahafonov, Y., Skrynyk, O., Osadcha, N., & Osadchyi, V. (2025). Climate change viewer: User-friendly web tool for climate change tracking in Ukraine. Geomatics and Environmental Engineering, 19(5), 49-62. https://doi.org/10.7494/geom.2025.19.5.49
37. Tabari, H. (2020). Climate change impact on flood and extreme precipitation increases with water availability. Scientific Reports, 10(1), 13768. https://doi.org/10.1038/s41598-020-70816-2
38. Vasylenko, E. (2015). Present spatial changes of time and duration of spring flooding in the Prypiat River catchment (Ukrainian part). Energetika, 61(2), 81–90. https://doi.org/10.6001/energetika.v61i2.3135
39. Guide to hydrological practices (2009). Management of water resources and application of hydrological practices. Volume II. 6th ed., No. 168. Geneva: World Meteorological Organization (WMO).
40. WMO guidelines on the calculation of climate normals (2017). No. 1203. Geneva: World Meteorological Organization (WMO). URL: https://library.wmo.int/idurl/4/55797

