RESULTS OF THE MODELING OF VARIABILITY OF OCEANOGRAPHIC PARAMETERS IN THE UKRAINIAN SECTOR OF THE BLACK SEA DURING STORMY PERIODS IN NOVEMBER 2023
Odesa I.I. Mechnikov National University, Odesa, Ukraine Institute of Marine Biology of the National Academy of Sciences of Ukraine, Odesa, Ukraine
https://orcid.org/0000-0003-3275-9065
Dmytro Kushnir
Odesa I.I. Mechnikov National University, Odesa, Ukraine
https://orcid.org/0000-0003-4556-0143
Olexsandr Matygin
Hydrometeorological Center for Black and Azov Seas, Odesa, Ukraine
https://orcid.org/0000-0002-0206-3414
Abstract
References
1. Il’in, Yu.P. et al. (2012). Gidrometeorologicheskie usloviya morey Ukrainy [Hydrometeorological conditions of the seas of Ukraine]. Vol. 2: Chernoe more [Black Sea]. Marine Department of the Ukrainian Research Hydrometeorological Institute Sevastopol, pp. 307-340. [In Russian]
2. Tuchkovenko, Yu. S., Gavrilyuk, R. V., Kushnir, D. V. (2021). Forecasting of the oceanographic parameters in the Ukrainian part of the Azov-Black Sea basin: monograph. Odesa: Odessa State Environmental University. URL: http://eprints.library.odeku.edu.ua/id/eprint/9344/ [In Ukrainian]
3. Kushnir, D. V., Tuchkovenko, Y. S., Popov, Y. I. (2019). Results of adaptation and verification of the coupled numerical models set for predicting the variation of oceanographic features in the North-Western part of the Black Sea. Ukrainian Hydrometeorological Journal, (23), 95-108. https://doi.org/10.31481/uhmj.23.2019.09 [In Ukrainian]
4. Tuchkovenko, Y. S., Kushnir, D. V., Goncharenko, R. V., Tytiuk, T. G., Shchyptsov, О. A. (2020). An automatized modeling complex to support the activity of the Naval Forces of Ukraine by providing the operational forecasts of oceanographic conditions. Collection of Scientific Works of the Center for Military and Strategic Research of the National Defense University of Ukraine, 3 (70). pp. 75-83 https://doi.org/10.33099/2304-2745/2020-3-70/75-83 [In Ukrainian]
5. Deltares (2025, April 22). D-Flow Flexible Mesh – Computational Cores and User Interface – User Manual, released for: Delft3D FM Suite 2D3D 2025, version: 2025, revision: 80249. Deltares, Delft, the Netherlands. URL: https://content.oss.deltares.nl/delft3dfm2d3d/D-Flow_FM_User_Manual.pdf.">https://content.oss.deltares.nl/delft3dfm2d3d/D-Flow_FM_User_Manual.pdf.
6. Deltares (2024a, December 24). D-Waves. Simulation of short-crested waves with SWAN. User Manual, version: 1.20, revision: 79761. Deltares, Delft, the Netherlands. 146 pp. URL: https://content.oss.deltares.nl/delft3d/D-Waves_User_Manual.pdf">https://content.oss.deltares.nl/delft3d/D-Waves_User_Manual.pdf
7. Deltares (2024b, November 14). Delta Shell – User Manual, version: 1.20, revision: 79761. Deltares, Delft, the Netherlands. URL:https://content.oss.deltares.nl/ delft3dfm2d3d/Delta_Shell_User _Manual.pdf
8. Duong, T., Ranasinghe, R., Thatcher, M., Mahanama, S., Wang, Z., Dissanayake, P., Hemer, M., Luijendijk, A., Bamunawala, J., Roelvink, D., Walstra, D. (2018) Assessing climate change impacts on the stability of small tidal inlets: Part 2 – Data rich environments. Marine Geology, 395(1), 65-81. https://doi.org/10.1016/j.margeo.2017.09.007
9. GFS Atmospheric Model (2003). URL: http://www.emc.ncep.noaa.gov/gmb/moorthi/gam.html
10. Grasmeijer, B., Huisman, B., Luijendijk, A., Schrijvershof, R., van der Werf, J., Zijl, F., Looff, H., Vries, W. (2022). Modelling of annual sand transports at the Dutch lower shoreface. Ocean & Coastal Management. 217. 105984. https://doi.org/10.1016/j.ocecoaman.2021.105984
11. Habib, M.A., Zarillo, G.A. (2023) Construction of a Real-Time Forecast Model for Coastal Engineering and Processes Nested in a Basin Scale Model. Journal of Marine Science and Engineering, 11(7), 1263. https://doi.org/10.3390/jmse11071263
12. Jansen, E., Martins, D., Stefanizzi, L., Ciliberti, S. A., Gunduz, M., Ilicak, M., Lecci, R., Cret?, S., Causio, S., Aydo?du, A., Lima, L., Palermo, F., Peneva, E. L., Coppini, G., Masina, S., Pinardi, N., Palazov, A., & Valchev, N. (2022). Black Sea Physical Analysis and Forecast (Copernicus Marine Service BS-Currents, EAS5 system) (Version 1). Copernicus Monitoring Environment Marine Service (CMEMS). https://doi.org/10.25423/cmcc/blksea_analysisforecast_phy_007_001_eas5.
13. Matala, A., Hunter, J., Robinson, K., Bennett, J. Building a modern, all-purpose hydrological forecasting system. In: MODSIM 2023; 09 to end of 13 Jul 2023; Darwin. MSSANZ; 2023. 567. csiro:EP2023-3167. http://hdl.handle.net/102.100.100/488600?index=1
14. NCEP GFS 0.25 Degree Global Forecast Grids Historical Archive (2024, October 14). https://rda.ucar.edu/datasets/ds084.1/.
15. Solano, M., Canals, M., & Leonardi, S. (2018). Development and validation of a coastal ocean forecasting system for Puerto Rico and the U.S. Virgin Islands. Journal of Ocean Engineering and Science, 3 (3), 223–236. https://doi.org/10.1016/j.joes.2018.08.004
16. Staneva, J., Ricker, M., & Behrens, A. (2022). Black Sea Waves Analysis and Forecast (CMEMS BS-Waves, EAS5 system) (Version 1) [Data set]. Copernicus Monitoring Environment Marine Service (CMEMS). https://doi.org/10.25423/CMCC/BLKSEA_ANALYSISFORECAST_WAV_007_003_EAS5
17. Valchev, N., Eftimova, P., & Andreeva, N. (2018). Implementation and Validation of a Multi-Domain Coastal Hazard Forecasting System in an Open Bay. Coastal Engineering, 134, 212–228. https://doi.org/10.1016/j.coastaleng.2017.08.008
18. Veeramony, J., Blain, C. A., Campbell, T., Martin, P., & Edwards, K. (2018). Momentum exchanges in coupled ocean-wave modeling system. OCEANS 2018 MTS/IEEE Charleston. https://doi.org/10.1109/oceans.2018.8604926
19. Zijl, F., Veenstra, J., Groenenboom, J. (2018). The 3D Dutch Continental Shelf Model – Flexible Mesh (3D DCSM-FM). Setup and validation. Report 1220339-000-ZKS-0042. Technical report, Deltares, Delft, The Netherlands. URL: https://open.rijkswaterstaat.nl/open-overheid/onderzoeksrapporten/@46869/the-3d-dutch-continental-shelf-model/

