VERIFICATION OF THE ICON NUMERICAL WEATHER PREDICTION MODEL IN UKRAINE
Ukrainian Hydrometeorological Institute of the State Emergency of Ukraine and the National Academy of Sciences of Ukraine, Kyiv
https://orcid.org/0000-0001-5029-4228
Oleksii Kryvobok
Ukrainian Hydrometeorological Institute of the State Emergency of Ukraine and the National Academy of Sciences of Ukraine, Kyiv
https://orcid.org/0000-0002-1730-1809
Olena Zabolotna
Ukrainian Hydrometeorological Institute of the State Emergency of Ukraine and the National Academy of Sciences of Ukraine, Kyiv
https://orcid.org/0009-0009-6338-7672
Abstract
References
1. Bastin, S., Bock, O., Chazette, P., et al. (2019). Modeling and observations of lower tropospheric humidity profiles in the Mediterranean. Atmospheric Chemistry and Physics, 19(5), 3155–3178. https://doi.org/10.5194/acp-19-3155-2019
2. Bauer, P., Thorpe, A., & Brunet, G. (2015). The quiet revolution of numerical weather prediction. Nature, 525(7567), 47–55. https://doi.org/10.1038/nature14956
3. Dipankar, A., Schlemmer, L., Gorges, K., et al. (2015). ICON–a novel approach for global modeling of atmospheric dynamics: first results and future perspectives. Geoscientific Model Development, 8(7), 2489–2511. https://doi.org/10.5194/gmd-8-2489-2015
4. Doroshenko, A., Shpyg, V., Budak I., Huda K. (2020). Numerical atmospheric models and their application in different areas of economics [In: Kvasniy L. and Tatomyr I. (eds) Ukraine in the context of global and national modern servisation processes and digital economy]: monograph. Praha: Oktan Print, 155-171. doi: 10.46489/uitcog0909
5. Ebert, E.E., Janowiak, J.E. & Kidd, C. (2016). Comparison of near-real-time precipitation estimates from satellite observations and numerical models over global land areas. Journal of Hydrometeorology, 17(8), 2453–2470. https://doi.org/10.1175/JHM-D-16-0010.1
6. Giorgetta, M. A., Brokopf, R., Crueger, T., Esch, M., Fiedler, S., Helmert, J., et al. (2018). ICON-A, the atmosphere component of the ICON Earth system model: I. Model description. Journal of Advances in Modeling Earth Systems, 10. https://doi.org/10.1029/2017MS001242
7. Hoffmann, P., Wilms, H., Blank, L., & Ludwig, P. (2022). Benchmarking high-resolution regional climate models over complex terrain: A case study for wind simulations in the Alps. Frontiers in Earth Science, 10, 789332. https://doi.org/10.3389/feart.2022.789332
8. Holoborodko, P., Lykhovyd, O., & Fedirko, V. (2020). Regional climatology and atmospheric dynamics of Ukraine: challenges for numerical weather prediction. Ukrainian Hydrometeorological Journal, 12(1), 45–59.
9. Kalnay, E. (2003). Atmospheric modeling, data assimilation and predictability. Cambridge University Press. https://doi.org/10.1017/CBO9780511802270
10. Liu, L., Huang, X., Chen, F., et al. (2021). Evaluation of relative humidity in weather and climate models over complex terrain. Journal of Geophysical Research: Atmospheres, 126(12), e2020JD034123. https://doi.org/10.1029/2020JD034123
11. Shpyg, V., Budak, I. (2015). WRF reflectivity simulation and verification of thunderstorm forecast by radar and surface observation. 16th International Radar Symposium. Symposium Materials (24-26 June 2015, Dresden, Germany). 610-615. doi: 10.1109/irs.2015.7226388
12. Shyian, S., Dudnik, I. & Makarenko, A. (2018). Climatic conditions of Ukraine and their variability: implications for weather prediction. Geographical Review of Ukraine, 11(2), 33–42.
13. Sundqvist, H., Berge, E. & Kristj?nsson, J.E. (1989). Condensation and cloud parame- terization studies with a mesoscale numerical weather prediction model. Monthly Weather Review, 117(8), 1641–1657.
14. Ukrainian Hydrometeorological Center. (2023). Annual report on meteorological observations and challenges. Kyiv: State Hydrometeorological Service of Ukraine.
15. Z?ngl, G., Reinert, D., R?podas, P. & Baldauf, M. (2015). The ICON (ICOsahedral Nonhydrostatic) modelling framework of DWD and MPI-M: description of the nonhydrostatic dynamical core. Quarterly Journal of the Royal Meteorological Society, 141(687), 563–579. https://doi.org/10.1002/qj.2378

