FORECASTING OF MEDIUM AND LONG-TERM COMPONENTS OF GROUNDWATER LEVEL FLUCTUATIONS USING ARTIFICIAL NEURAL NETWORKS METHOD
The institute of Environmental Geochemistry of National Academy of Sciences of Ukraine
https://orcid.org/0000-0001-6150-6433
Oleksii Shevchenko
Український гідрометеорологічний інститут Державної служби України з надзвичайних ситуацій та Національної академії наук України, Київ
https://orcid.org/0000-0002-5791-5354
Abstract
References
2. Grossmann, A. and Morlet, J. (1984). Decomposition of Hardy functions intosquare integrable wavelets of constant shape. SIAM J. Math. Anal. 15. 723-736.
3. Guo, T., Song, S., Yan, Y. (2022). A time-varying autoregressive model for groundwater depth prediction. J. Hydrol. 613, 128394 https://doi.org/10.1016/j.jhydrol.2022.128394.
4. Javadinejad, S., Dara, R. and Jafary, F. (2020). How groundwater level can predict under the effect of climate change by using artificial neural networks of NARX. Resources Environment and Information Engineering. https://doi.org/10.25082/REIE.2020.01.005
5. Lototska-Dudyk, U. B., & Laboyko, V. V. (2022). Quality of drinking water and the state of water supply of the population of Ukraine under martial law. Current problems of preventive medicine. (24), 5-14. [In Ukrainian]
6. Poonia V., Tiwari H. L., Mishra S. (2018). Hydrological Analysis by Artificial Neural Network: A Review. International Journal of Advance Research, Ideas and Innovations in Technology. 4(3). 265-270.
7. Rudenko, Yu. F., Yurkova, N. A., Gural, O. V., & Saprykin, V. Yu. (2024). Some issues of local drinking water supply of the population during martial law (on the example of Ukrainian cities with a population of over 100 thousand people). Part 1. Mineral resources of Ukraine, (4), 64-70. [In Ukrainian]
8. Shestopalov, V., Rudenko, Y., Koliabina, I., Stetsenko, B., & Yaroshenko, K. (2024). Groundwater for urban water supply in Ukraine: a case study of Mykolaiv (Military challenges and lessons for the future). Acque Sotterranee-Italian Journal of Groundwater,13(3).
9. Shevchenko A.L., Osadchyі V.I., Charnyі D.V. (2019). Changes in the regime, balance and resources of underground waters of Polissya and the Forest-steppe of Ukraine under the influence of global warming. Academic notes of Brest University. 15 (2). 117-128. [In russian]
10. Shevchenko O.L., Skorbun A.D., Osadchyi V.I., Charnyi D.V. (2021). Changing rhythms in the groundwater regime and their relationship with climatic factors. Bulletin of the Taras Shevchenko National University of Kyiv (Geology). 2 (93). 71-82. http://doi.org/10.17721/1728-2713.93.08 [In Ukrainian]
11. Shevchenko O.L., Charnyi D.V., Rudoman M.M. (2022). Forecasting groundwater flow to the Southern Bug River by statistical methods and using artificial neural networks. Meteorology, Hydrology, Environmental Monitoring, 2. 43-53. [In Ukrainian]
12. ?liwi?ska, J., Birylo, M., Rzepecka, Z., & Nastula, J. (2019). Analysis of groundwater and total water storage changes in Poland using GRACE observations, in-situ data, and various assimilation and climate models. Remote Sensing, 11(24), 2949. https://doi.org/10.3390/rs11242949
13. Solovey, T., ?liwi?ska-Bronowicz, J., Janica, R., Brzezi?ska, A. (2025). Assessment of the effectiveness of GRACE observations in monitoring groundwater storage in Poland. Water Resources Research, 61(8), https://doi.org/10.1029/2024WR038888
14. Solovey, T., ?liwi?ska-Bronowicz, J., Janica, R., Brzezi?ska, A., Stradczuk, A. (2025а). Fusing GRACE data into terrestrial water budgets to improve their predictive performance: a case study of the Bug River Transboundary Catchment, Polish-Ukrainian-Belarusian Borderland. Geological Quarterly, 69(16), https://doi.org/10.7306/gq.1789
15. Wagena, M.B., Goering, D., Collick, A.S., Bock, E., Fuka, D.R., Buda, A., Easton, Z.M. (2020). Comparison of short-term streamflow forecasting using stochastic time series, neural networks, process-based and Bayesian models. Environ. Model. Softw. 126, 104669, https://doi.org/10.1016/j.envsoft.2020.104669
16. Yadav, N., Yadav, A., and Kumar, M. (2015). “An introduction to Neural Network methods for Differential equations. Springer briefs in applied science and technology. 17-42.

