CHANGES IN THE STATISTICAL STRUCTURE AND VARIABILITY OF POLLUTANTS TOTAL CONTENT IN THE ATMOSPHERIC AIR OVER URBANIZED AREAS AS A RESULT OF THE FULL-SCALE RUSSIAN INVASION
Ukrainian Hydrometeorological Institute of the State Emergency Service of Ukraine and the National Academy of Sciences of Ukraine, Kyiv
https://orcid.org/0000-0003-3038-5960
Natalia Zhemera
Ukrainian Hydrometeorological Institute of the State Emergency Service of Ukraine and the National Academy of Sciences of Ukraine, Kyiv
https://orcid.org/0009-0001-9350-4915
Mykhailo Savenets
Ukrainian Hydrometeorological Institute of the State Emergency Service of Ukraine and the National Academy of Sciences of Ukraine, Kyiv
https://orcid.org/0000-0001-9429-6209
Abstract
References
1. Bun, R., Marland, G., Oda, T., See, L., Puliafito, E., Nahorski, Z., Jonas, M., Kovalyshyn, V., Ialongo, I., Yashchun, O., Romanchuk, Z. (2024). Tracking unaccounted greenhouse gas emissions due to the war in Ukraine since 2022. Sci Total Environ 914:169879. https://doi.org/10.1016/j.scitotenv.2024.169879
2. Davybida, L.I. (2023). Air quality impacts of war detected from the Sentinel-5P satellite over Ukraine. IOP Conf Ser Earth Environ Sci 1254(1): 012112. https://doi.org/10.1088/1755-1315/1254/1/012112
3. Filho, W.L., Fedoruk, M., Paulino Pires Eustachio, J.H., Splodytel, A., Smaliychuk, A., Szynkowska-J??wik, M.I. (2024). The environment as the first victim: The impacts of the war on the preservation areas in Ukraine. J Environ Manag 364:121399. https://doi.org/10.1016/j.jenvman.2024.121399
4. Gallo-Cajiao E, Dol?ak N, Prakash A, Mundkur T, Harris PG, Mitchell RB, Davidson N, Hansen B, Woodworth BK, Fuller RA, Price M, Petkov N, Mauerhofer V, Morrison TH, Watson JEM, Chowdhury SU, Z?ckler C, Widerberg O, Yong DL, Klich D, Smagol V, Piccolom J, Biggs D (2023). Implications of Russia’s invasion of Ukraine for the governance of biodiversity conservation. Front conserv sci 4. https://doi.org/10.3389/fcosc.2023.989019
5. Ialongo, I., Bun, R., Hakkarainen, J., Virta, H., Oda, T. (2023). Satellites capture socioeconomic disruptions during the 2022 full-scale war in Ukraine. Sci Rep 13(1):14954. https://doi.org/10.1038/s41598-023-42118-w
6. Jiadan, D., Liqiao, T., Fang, C., Xiaobin, C., Xiaoling, C., Qiangqiang, X., Xinghui, X. (2023). Spatio-temporal variations of aerosol optical depth over Ukraine under the Russia-Ukraine war. Atmos Environ 314:120114. https://doi.org/10.1016/j.atmosenv.2023.120114
7. Jiang, D., Khokhlov, V., Tuchkovenko, Y., Kushnir, D., Ovcharuk, V., Spyrakos, E., Stanica, A., Slabakova, V., Tyler, A. (2025). The biogeochemical response of the north-western Black Sea to the Kakhovka Dam breach. Commun Earth Environ 6(1):185. https://doi.org/10.1038/s43247-025-02153-z
8. Liadze, I., Macchiarelli, C., Mortimer?Lee, P., Sanchez Juanino, P. (2023). Economic costs of the Russia?Ukraine war. World Econ 46(4):874–886. https://doi.org/10.1111/twec.13336
9. Malytska, L., Ladst?tter-Wei?enmayer, A., Galytska, E., Burrows, J.P. (2024). Assessment of environmental consequences of hostilities: Tropospheric NO2 vertical column amounts in the atmosphere over Ukraine in 2019–2022. Atmos Environ 318:120281. https://doi.org/10.1016/j.atmosenv.2023.120281
10. Meng, X., Lu, B., Liu, C., Zhang, Z., Chen, J., Herrmann, H., Li, X. (2023). Abrupt exacerbation in air quality over Europe after the outbreak of Russia-Ukraine war. Environ Int 178:108120. https://doi.org/10.1016/j.envint.2023.108120
11. Phan, A., Fukui, H. (2024). Quantifying the impacts of the COVID-19 pandemic lockdown and the armed conflict with Russia on Sentinel5P TROPOMI NO2 changes in Ukraine. Big Earth Data 8(1):58–81. https://doi.org/10.1080/20964471.2023.2265105
12. Radomska, M., Stevens, R., Semkiv, M., Yatsenko, Y., Lysovenko, S. (2023). An initial data-limited modeling of the environmental consequences: case-study of the Vasylkiv fuel reservoir fire. Environ Probl 8(2):76–86. https://doi.org/10.23939/ep2023.02.076
13. Savenets, M., Osadchyi, V., Komisar K, Zhemera N, Oreshchenko A (2023) Remotely visible impacts on air quality after a year-round full-scale Russian invasion of Ukraine. Atmos Pollut Res 14(11):101912. https://doi.org/10.1016/j.apr.2023.101912
14. Scher, C., Van den Hoek, J. (2025). Nationwide conflict damage mapping with interferometric synthetic aperture radar: A study of the 2022 Russia–Ukraine conflict. Sci Rem Sens 11:100217. https://doi.org/10.1016/j.srs.2025.100217
15. Shumilova, O., Tockner, K., Sukhodolov, A., Khilchevskyi, V., de Meester, L., Stepanenko, S., Trokhymenko, G., Hern?ndez-Ag?ero, J.A., Gleick, P. (2023). Impact of the Russia–Ukraine armed conflict on water resources and water infrastructure. Nat Sustain 6(5):578–586. https://doi.org/10.1038/s41893-023-01068-x
16. Zalakeviciute, R., Mejia, D., Alvarez, H., Bermeo, X., Bonilla-Bedoya, S., Rybarczyk, Y., Lamb, B. (2022). War Impact on Air Quality in Ukraine. Sustainability 14(21):13832. https://doi.org/10.3390/su142113832
17. Zhang, C., Hu, Q., Su, W., Xing, C., Liu, C. (2023). Satellite spectroscopy reveals the atmospheric consequences of the 2022 Russia-Ukraine war. Sci Tot Environ 869:161759. https://doi.org/10.1016/j.scitotenv.2023.161759

