CLIMATE CHARACTERISTICS OF THERMAL PERIODS IN UKRAINE UNTIL THE END OF THE 21st CENTURY. PART I: WARM PERIOD

Krakovska S.
Ukrainian Hydrometeorological Institute of the State Emergency Service of Ukraine and National Academy of Sciences of Ukraine, Kyiv, Ukraine
https://orcid.org/0000-0001-9972-0937

Shpytal T.
Ukrainian Hydrometeorological Institute of the State Emergency Service of Ukraine and the National Academy of Sciences of Ukraine, Kyiv
https://orcid.org/0009-0001-7731-4521

Chyhareva A.
Ukrainian Hydrometeorological Institute of the State Emergency Service of Ukraine and the National Academy of Sciences of Ukraine, Kyiv
https://orcid.org/0000-0003-0195-751X

Pysarenko L.
Ukrainian Hydrometeorological Institute of the State Emergency Service of Ukraine and the National Academy of Sciences of Ukraine, Kyiv
https://orcid.org/0000-0002-2885-0213

Kryshtop L.
Ukrainian Hydrometeorological Institute of the State Emergency Service of Ukraine and the National Academy of Sciences of Ukraine, Kyiv
https://orcid.org/0009-0003-8863-9422

DOI: http://doi.org/10.15407/Meteorology2023.04.035

Keywords: Keywords: thermal regime, climate change, representative concentration pathways, climate characteristic projections, regional climate model (RCM), date of persistent air temperature transition

Abstract

The first article in a series of analyses on changes in thermal periods in Ukraine until the end of the 21st century is presented here. It focuses on analyzing the characteristics of the warm period, defined by a persistent transition of the average daily temperature above 0°C, separating it from the winter period. With the improvement in the spatial resolution of regional climate models (RCMs) and the updating of scenarios, there is a need to refine the characteristics of the warm period, crucial especially for agriculture and forestry. Based on data from the E-Obs database, the start dates, end dates, and duration of the warm period in Ukraine during the standard climatic period of 1961-1990 were analyzed, along with changes in these characteristics further in 1991-2010. An assessment of changes in values for future periods 2021-2040, 2041-2060, and 2081-2100 was also conducted using scenarios of representative concentration pathways (RCP 4.5 and RCP 8.5) with an ensemble of 34 RCMs from the Euro-CORDEX project with a spatial grid resolution of approximately 12×12 km. It's worth noting that previous studies by other authors have already assessed changes in the characteristics of the warm period, but using previous A1B scenarios and a much smaller number of RCMs characterized by a coarser grid of 25×25 km. According to updated climate scenarios, the duration of the warm season in the 21st century will increase across the entire territory of Ukraine, with more pronounced changes expected in the north and east. Under RCP 4.5 and RCP 8.5 scenarios, an increase in the duration of the warm period is projected in 2021-2040 relative to 1991-2010: from 7-14 days in the south to 20-23 days in the north and east of Ukraine. In the period 2041-2060, under RCP 4.5, changes will range from 7 days in the south, Transcarpathia, and the Carpathians to 20-25 days in the northeast, while under RCP 8.5, changes will range from 7-14 to 30-35 days, respectively. By the end of the century, these changes will continue, and in Crimea, there is a high likelihood that temperatures will not drop below 0°C, meaning there will be no winter season. Analysis of other thermal periods will be presented in subsequent parts of the study.

References

1. Adamenko T.I., Kulbida M.I. & Prokopenko A.L.. (2011) Ahroklimatychnyi dovidnyk po terytorii Ukrainy. Kam’ianets-Podilskyi: PP Halahodza R.S. [in Ukrainian]

2. Adamenko, T. I. (2014) Ahroklimatychne zonuvannia terytorii Ukrainy z vrakhuvanniam zminy klimatu. K.: VEHO “MAMA-86” [in Ukrainian]

3. Adamenko T.I., Kulbida M.I. & Prokopenko A.L. (2016) Atlas “Ahroklimatychni resursy Ukrainy”. Kyiv. [in Ukrainian]

4. Balabukh V.O. (2018) Dynamika serednorichnykh pokaznykiv temperatury povitria i kilkosti opadiv v okremykh hruntovo-klimatychnykh zonakh Ukrainy. Adaptatsiia ahrotekhnolohii do zmin klimatu: hruntovo-ahrokhimichni aspekty: kolektyvna monohrafiia / Za. red. S. A. Baliuka, V. V. Medvedeva, B. S. Noska. Kharkiv. Stylna typohrafiia. [in Ukrainian]

5. Osadchyi V.I., Babichenko V.M. (2010) Daty perekhodu temperatury povitria v Ukraini za suchasnykh umov klimatu. Kyiv, Nika-Tsentr.304 s. [in Ukrainian]

6. Doslidzhennia rehionalnykh osoblyvostei zminy klimatu v Ukraini u ХХІ st. na osnovi chyselnoho modeliuvannia. Zvit pro NDR (zakliuchnyi). (2013) Shyfr roboty 1/11. K.: UHMI. 173 s. № DR 0111U001571 [in Ukrainian]

6. Zabolotska T.M., Skrynyk O.A. (2009) Forecast of data to the stable change of earth mean daily temperature through appointed limits. Nauk. pratsi UkrNDHMI, 25, 84-105 [in Ukrainian]

8. Shevchenko O.H., Snizhko S.I., Vitrenko A.O. (2019) Economic meteorology. The textbook.: Maister knyh [in Ukrainian]

9. Stepanenko, S.M., & Polevoy, A.M. (2018). Climatic risks of functioning of branches of the eco-nomy of Ukraine in the conditions of climate chan ge. Odesa: TES [in Ukrainian]

10. Lipinskyy, V., Dyachuk, V., & Babichenko, V. (2003). Climate of Ukraine. Kyiv: Rayevskyy Publishing [in Ukrainian]

11. Krakovska S.V., Gnatiuk N.V., Shpytal T.M., Palamarchuk L.V. (2016a) Projections of surface air temperature changes based on data of regional climate models’ ensemble in the regions of Ukraine in the 21st century Nauk. pratsi UkrNDHMI, 268, 33-44 [in Ukrainian]

12. Krakovska S.V., Palamarchuk L.V., Shpytal T.M. (2016б). Electronic databases and results of numerical simulations in defining specialized climate indices. Hydrology, hydrochemistry and hydroecology, 3 (42), 95-105 [in Ukrainian]

13. Krakovska S.V., Shpytal T.M. (2018) Dates of air temperature transition over 0, 5, 10 and 15 °C and corresponding lengths of climatic seasons from the second part of the 20th to the middle of the 21st century in Ukraine. Geoinformatika, 4(68), 74-92 [in Ukrainian]

14. Pol’ovyi A.M., Bozhko L.Yu., Volvach O.V. (2012) Fundamentals of Agricultural Meteorology: The textbook. Odesa, Vydavnytstvo TES. [in Ukrainian]

15. Palamarchuk L.V., Krakovska S.V. (2018) Rehionalni zminy klimatu Ukrainy: Metodychni vkazivky do navchalnoho kursu dlia studentiv heohrafichnoho fakultetu spetsialnosti «Meteorolohiia ta klimatolohiia». Kyiv, Print-Servis. [in Ukrainian]

16. Pol’ovyi, А. M., & Bozhko, L. Yu. (2015). Thermal resources of Ukraine in the conditions of climate change. Ukrainian Hydrometeorological Journal, 16, 99–106. https://doi.org/10.31481/uhmj.16.2015.13 [in Ukrainian]

17. Polevoy, A. N., Bozhko, L. E., & Barsukova, E. A. (2017). Impact of climat changes on agro-climatic indices of the vegetative period of main agricultural crops. Ukrainian Hydrometeorological Journal, 20, 61–70. https://doi.org/10.31481/uhmj.20.2017.07 [in Ukrainian]

18. Pro zatverdzhennia Pravyl nadannia posluhy z postachannia teplovoi enerhii i typovykh dohovoriv pro nadannia posluhy z postachannia teplovoi enerhii: Postanova Kabinetu Ministriv Ukrainy vid 21 serpnia 2019. (2019) № 830. https://zakon.rada.gov.ua/laws/show/830-2019-%D0%BF#Text [in Ukrainian]

19. Pro skhvalennia Kontseptsii Zahalnoderzhavnoi tsilovoi prohramy vykorystannia ta okhorony zemel: Rozporiadzhennia Kabinetu Ministriv Ukrainy vid 19 sichnia 2022 (2022) № 70-р. https://zakon.rada.gov.ua/laws/show/70-2022-%D1%80#Text [in Ukrainian]

20. Rozroblennia onovlenykh stsenariiv zminy kharakterystyk rehionalnoho klimatu Ukrainy do kintsia KhKhI st. Zvit pro NDR (ostatochnyi) (2021). К.: UHMI. 231 p. № ДР 0119U001123 [in Ukrainian]

21. Snizhko S.I., Zabolotska T.M., Skrynyk O.A. (2008) Osoblyvosti teploho i vehetatsiinykh periodiv v Ukraini: tendentsii zmin vnaslidok hlobalnoho poteplinnia. Naukovyi chasopys Natsionalnoho pedahohichnoho universytetu imeni Drahomanova. Ser. 4. Heohrafiia i suchasnist, 14, 34-38 [in Ukrainian]

22. Snizhko S.I., Skrynyk O.A., Shcherban I.M. (2007) Osoblyvosti tryvalosti vehetatsiinoho periodu i periodu aktyvnoi vehetatsii na terytorii Ukrainy (tendentsii zminy vnaslidok hlobalnoho poteplinnia). Ukrainian Hydrometeorological Journal, 2, 119 – 128 [in Ukrainian]

23. Skrynyk O.A., Skrynyk O.Ya. (2006) Do problemy vyznachennia daty stiikoho perekhodu serednoi dobovoi temperatury povitria cherez fiksovane znachennia. Nauk. pratsi UkrNDHMI, 255, 42-56 [in Ukrainian]

24. Khokhlov, V., & Yermolenko, N. (2017). Future climate change and it`s impact on precipitation and temperature in Ukraine. Ukrainian Hydrometeorological Journal, 16, 76–82. https://doi.org/10.31481/uhmj.16.2015.10 [in Ukrainian]

25. Shvydenko A., Buksha I., Krakovska S.(2018). Vulnerability of Ukraine’s forests to climate change. Monograph. Nika-Tsentr. [in Ukrainian]

26. Shedemenko I.P., Krakovska S.V., Gnatiuk N.V. (2012) Verification of surface temperature and precipitation from European gridded data set E-OBS for administrative regions in Ukraine. Nauk. pr. UkrNDHMI, 262, 71-90 [in Ukrainian]

27. Lalic B., Eitzinger J., Dalla Marta A., Orlandini S., Firanj Sremac A., Pacher B.(2018) Agricultural Meteorology and Climatology . Firenze: Firenze University Press

28. Technical Summary. (2023). In Climate Change 2021 – The Physical Science Basis (pp. 35–144). Cambridge University Press. https://doi.org/10.1017/9781009157896.002

29. Breakout Group 3bis: Bias Correction (pp. 21-23) in IPCC, 2015: Workshop Report of the Intergovernmental Panel on Climate Change Workshop on Regional Climate Projections and their Use in Impacts and Risk Analysis Studies [Stocker, T.F., D. Qin, G.-K. Plattner, and M. Tignor (eds.)]. IPCC Working Group I Technical Support Unit, University of Bern, Bern, Switzerland, pp. 171. https://archive.ipcc.ch/pdf/supporting-material/RPW_WorkshopReport.pdf (Accessed: 10.12.2023).

30. Cornes, R. C., van der Schrier, G., van den Besselaar, E. J. M., & Jones, P. D. (2018). An Ensemble Version of the E‐OBS Temperature and Precipitation Data Sets. Journal of Geophysical Research: Atmospheres, 123(17), 9391–9409. https://doi.org/10.1029/2017JD028200

31. IPCC, 2021: Summary for Policymakers. In: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [MassonDelmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. Cambridge University Press. In Press. URL: https://www.ipcc.ch/report/ar6/wg1/#SPM (Accessed 12.12.2023)

32. Summary for Policymakers. (2022). In Global Warming of 1.5°C (pp. 1–24). Cambridge University Press. https://doi.org/10.1017/9781009157940.001

33. Summary for Policymakers. (2022). In Climate Change and Land (pp. 1–36). Cambridge University Press. https://doi.org/10.1017/9781009157988.001

34. Jacob, D., Petersen, J., Eggert, B., Alias, A., Christensen, O. B., Bouwer, L. M., Braun, A., Colette, A., Déqué, M., Georgievski, G., Georgopoulou, E., Gobiet, A., Menut, L., Nikulin, G., Haensler, A., Hempelmann, N., Jones, C., Keuler, K., Kovats, S., … Yiou, P. (2014). EURO-CORDEX: new high-resolution climate change projections for European impact research. Regional Environmental Change, 14(2), 563–578. https://doi.org/10.1007/s10113-013-0499-2

35. Kebede, A. S., Nicholls, R. J., Allan, A., Arto, I., Cazcarro, I., Fernandes, J. A., Hill, C. T., Hutton, C. W., Kay, S., Lázár, A. N., Macadam, I., Palmer, M., Suckall, N., Tompkins, E. L., Vincent, K., & Whitehead, P. W. (2018). Applying the global RCP–SSP–SPA scenario framework at sub-national scale: A multi-scale and participatory scenario approach. Science of The Total Environment, 635, 659–672. https://doi.org/10.1016/j.scitotenv.2018.03.368

36. Schulzweida, Uwe. (2019, October 31). CDO User Guide (Version 1.9.8). http://doi.org/10.5281/zenodo.3539275

37. Taylor, K. E., Stouffer, R. J., & Meehl, G. A. (2012). An Overview of CMIP5 and the Experiment Design. Bulletin of the American Meteorological Society, 93(4), 485–498. https://doi.org/10.1175/BAMS-D-11-00094.1

38. The WCRP Coupled Model Intercomparison Project - Phase 5 (CMIP5) - CLIVAR Exchanges Special Issue, No. 56, Vol 16, 32pp, 2011.

39. WMO Guidelines on the Calculation of Climate Normals (2017). WMO-No. 1203. 574 p.

About ׀ Editorial board ׀ Ethics ׀ For authors ׀ For reviewers ׀ Archive ׀ Contacts